
Time Series Analysis: Unsupervised Anomaly
Detection Beyond Outlier Detection

Max Landauer1�, Markus Wurzenberger1, Florian Skopik1, Giuseppe
Settanni1, and Peter Filzmoser2

1 Austrian Institute of Technology,
Austria,

firstname.lastname@ait.ac.at
2 Vienna University of Technology,

Austria,
peter.filzmoser@tuwien.ac.at

Abstract. Anomaly detection on log data is an important security mech-
anism that allows the detection of unknown attacks. Self-learning algo-
rithms capture the behavior of a system over time and are able to identify
deviations from the learned normal behavior online. The introduction
of clustering techniques enabled outlier detection on log lines indepen-
dent from their syntax, thereby removing the need for parsers. However,
clustering methods only produce static collections of clusters. There-
fore, such approaches frequently require a reformation of the clusters in
dynamic environments due to changes in technical infrastructure. More-
over, clustering alone is not able to detect anomalies that do not manifest
themselves as outliers but rather as log lines with spurious frequencies
or incorrect periodicity. In order to overcome these deficiencies, in this
paper we introduce a dynamic anomaly detection approach that gener-
ates multiple consecutive cluster maps and connects them by deploying
cluster evolution techniques. For this, we design a novel clustering model
that allows tracking clusters and determining their transitions. We detect
anomalous system behavior by applying time-series analysis to relevant
metrics computed from the evolving clusters. Finally, we evaluate our
solution on an illustrative scenario and validate the achieved quality of
the retrieved anomalies with respect to the runtime.
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1 Introduction

Recent technological advancements have led to an increase of network commu-
nication between computer systems. Unfortunately, this also causes the appear-
ance of novel attack vectors and other previously unimaginable threats. Poten-
tial entry points allowing intrusions thereby include legacy systems that are not
updated regularly or products that loose vendor support and are insufficiently
protected because of outdated security measures.



It is therefore necessary to deploy Intrusion Detection Systems (IDS) that are
differentiated between three forms: (i) signature-based detection, a blacklisting
approach that compares events with a known set of patterns, (ii) anomaly-based
detection, which is able to detect deviations from learned normal system be-
havior, and (iii) stateful protocol analysis, a whitelisting approach that requires
expert knowledge to build a model of allowed system behavior [13]. However,
complex computer systems generally require too much effort to be appropriately
modeled and blacklisting approaches are not protecting against unknown forms
of attacks. Thus, we argue that anomaly detection offers a feasible alternative
while being able to flexibly adapt to changing system environments.

Many anomaly detection techniques base on machine learning algorithms
that operate in three different settings: (i) supervised, where a training set that
contains labeled events both for normal and malicious behavior is analyzed to
classify future events, (ii) semi-supervised, where only normal system behavior
is provided as training input, and (iii) unsupervised, where no training set is
required and learning happens on-the-fly during detection [4]. We recommend
an unsupervised approach for several reasons. First, creating a comprehensive
labeled data set for supervised algorithms that considers all types of attacks is
a difficult task that requires time-consuming manual work and expert knowl-
edge. Second, capturing normal system behavior for semi-supervised algorithms
requires anomaly-free environments that can hardly be guaranteed in practice.
Finally, dynamic networks that exhibit changing system behavior over time fre-
quently require regenerations of the training data even in anomaly-free settings.

Attacks are usually planned to only show minor visible effects on the system.
Fortunately, even very subtle intrusions manifest themselves in log files that
record all events taking place in a system. Moreover, it is possible to trace a
detected attack to its origin by analyzing the corresponding log lines. Such an
investigation on historic data that detects anomalies in hindsight is known as
forensic analysis. Contrary to that, online anomaly detection processes the lines
as they are generated and identifies anomalies that do not comply with the
learned behavior, thereby identifying attacks close to the time when they occur.

There exist norms on what characters are allowed in log data (e.g., RFC3164)
and standards that define the syntax of log messages for specific services (e.g.,
syslog for UDP). However, log files often accumulate logs from multiple services
and thus several standards may be mixed together, each of which requiring its
own parser. Therefore, a more general approach that employs string metrics for
grouping similar log lines independent from their structure is beneficial. Methods
that form such cluster maps, i.e., sets of grouped log lines, successfully detected
anomalous lines in [17], however provide only a static view on the data. Such
existing solutions do not focus their attention on the following challenges:

– Log data is inherently dynamic and thus insufficiently analyzed by static
cluster maps. Cluster Evolution (CE) techniques solve this problem by iden-
tifying connections between clusters from different maps.

– Anomalous log lines not only differ in their similarity but also relate to sud-
den changes in frequency, correlation or interruptions of temporal patterns.



– Cluster features, i.e., metrics retrieved from CE, require time-series analysis
(TSA) methods for detecting anomalies in their continuous developments.

– Parsers cannot be defined for text-based log lines without known syntaxes
and thus string metrics are required for similarity-based clustering.

Therefore, there is a need for dynamic log file anomaly detection that does
not only retrieve lines that stand out due to their dissimilarity with other lines,
but also identifies spurious line frequencies and alterations of long-term periodic
behavior. We therefore introduce an anomaly detection framework containing
the following novel features:

– An algorithm for consolidating the evolution of clusters from a continuous
and potentially endless series of static cluster maps,

– the computation of metrics based on the temporal cluster developments,
– time-series modeling and one-step ahead prediction for anomaly detection,
– linear scalability on the number of log lines allowing real-time analysis,
– detection of contextual anomalies, i.e., outliers within their neighborhood,
– a realistic scenario evaluating the efficiency and effectiveness of our method.

The paper is structured as follows: Section 2 summarizes the field of CE
for anomaly detection. Section 3 gives an overview about the concept of our
approach. Sections 4 and 5 explore the theoretical background of CE and TSA
respectively. Section 6 contains the evaluation and Section 7 concludes the paper.

2 Related Work

A large amount of research in the field of Cluster Evolution (CE) focuses on
graphs (e.g., [3]). With its well-founded theoretical basis that covers both static
and dynamic techniques, graph theory is a powerful tool for analyzing many
kinds of network structures. For example, social networks conveniently represent
graphs and are therefore frequently the target of so-called community evolution
analyses. Similarly, the network connections between users within a computer
system are often represented as a graph that allows the derivation of several
relevant metrics that facilitate reasoning over the current state and behavior of
the system. This idea has successfully been extended to anomaly detection by
approximating and examining the dynamic development of metrics with time-
series models [12]. However, most graph-based algorithms are not designed for
a direct application of text-based CE.

When observing clusters over time it is important to identify any occurring
changes of individual clusters or the overall cluster structure. Spiliopoulou et al.
[15] introduces an algorithm on detecting these changes. Potentially applicable
metrics derived from cluster interdependencies are given in [16].

He et al. [8] generate an event count matrix as a template for storing the fre-
quencies of log lines. They then employ machine learning on fixed time windows,
sliding time windows and session identifiers in order to identify deviations from
the template. Applications that require tracking clusters over time also exist in



research areas other than security, such as GPS tracking [9] where groups of
points move across a plane. The clusters are described by relevant properties
such as size, location and direction of movement, all of which are incremen-
tally updated in every time step. Zhou et al. [19] introduce a similar dynamic
collection of cluster features called Exponential Histogram of Cluster Features.
Lughofer and Sayed-Mouchaweh [11] discuss an incremental method that sup-
ports adding and removing elements from clusters as well as merges and splits
that can occur when clusters collide into or move through each other.

Chi et al. [5] suggest to smooth the time-series for retrieving more robust in-
sights into the cluster developments and introduce two frameworks that focus on
preserving the cluster quality and cluster memberships respectively. Xu et al. [18]
extend these techniques by an evolutionary clustering algorithm. Chakrabarti et
al. [2] outline the importance of alignment with snapshots of historical clusterings
and propose an adapted hierarchical and K-Means algorithm as a solution.

3 Concept

This section uses an illustrative example to describe the concept of the anomaly
detection approach that employs Cluster Evolution (CE) and time-series analysis
(TSA). For this, consider log lines that correspond to three types of events,
marked with ©, 4 and �. The bottom of Fig. 1 shows the occurrence of these
lines on the continuous time scale that is split up by t0, t1, t2, t3 into three time
windows. The center of the figure shows the resulting sequence of cluster maps
C, C′, C′′ generated for each window. Note that in this example the clusters are
marked for clarity. Due to the isolated generation of each map it is usually not
possible to draw this connection and reason over the developments of clusters
beyond one time window. The cluster transitions shown in the top of the figure,
including changes in position (C4 in [t1, t2]), spread (C4 in [t2, t3]), frequency
(C� in [t2, t3]) as well as splits (C© in [t2, t3]), are thus overseen.

Fig. 1. Bottom: Log lines occurring within time windows. Center: Static cluster maps
for every window. Top: Schematic clusters undergoing transitions.

We therefore introduce an approach for dynamic log file analysis that involves
CE and TSA in order to overcome these problems (Fig. 2). In step (1), the



algorithm iteratively reads the log lines either from a file or receives them as a
stream. Our approach is able to handle any log format, however, preprocessing
may be necessary depending on the log standard at hand. In our case, we use
the preprocessing step (2) to remove any non-displayable special characters that
do not comply to the standard syslog format defined in RFC3164. Moreover,
this step extracts the time stamps associated with each log line as they are not
relevant for the clustering. This is due to the fact that the online handling of lines
ensures that each line is processed almost instantaneously after it is generated.

(1) Read input file 
line by lineLog file

(2) Preprocessing: 
Extract time 
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Fig. 2. Flowchart of the dynamic clustering and anomaly detection procedure.

Step (3) involves grouping log lines within each time window according to
their similarity, resulting in a sequence of cluster maps. It is non-trivial to de-
termine how clusters from one map relate to clusters from the maps created
during their preceding or succeeding time windows. Clustering the lines consti-
tuting each map into the neighboring maps (4) establishes this connection across
multiple time windows and allows the determination of transitions (5). A cluster
from one time window evolves to another cluster from the following time window
if they share a high fraction of common lines. More sophisticated case analysis
is also able to differentiate advanced transitions such as splits or merges.

Several features of the clusters are computed (6) and used for metrics that
indicate anomalous behavior. As the computations of these metrics follow the
regular intervals of the time windows, we use TSA models (7) to approximate
the development of the features over time. The models are then used to fore-
cast a future value and a prediction interval lying one step ahead. If the actual
recorded value occurring one time step later does not lie within these limits (8),
an anomaly is detected. Figure 3 shows how the prediction limits (dashed lines)
form “tubes” around the measured cluster sizes. Anomalies appear in points
where the actual cluster size lies outside of that tube.

Finally, the time-series of the cluster properties are also grouped according
to their pairwise correlations. An incremental algorithm groups the time-series
similarly to the clustering of log lines. Carrying out this correlation analysis in
regular intervals allows determining whether time-series that used to correlate
with each other over a long time suddenly stop or whether new correlations
between clusters appear, which are indicators of anomalous events (9).



Fig. 3. Time-series representing the sizes of two evolving clusters (black solid lines)
with prediction intervals (blue dashed lines) and detected anomalies (red circles). Top:
A cluster affected by all anomalies. Bottom: A cluster not affected by periodic events.
Anomalies are caused by (a) incorrect periodicity, (b) sudden frequency increase, (c)
long-term frequency increase, (e) slow frequency increase. (d) is a false positive.

4 Cluster Evolution

This section describes in detail how online CE is performed on log lines. The
approach is introduced stepwise, starting with a novel clustering model that es-
tablishes connections between cluster maps. Subsequently, we explain the process
of tracking individual clusters and determining their transitions.

4.1 Clustering Model

Considering only the lines of a single time window, we employ our incremental
clustering approach introduced in [17]. The procedure is as follows: The first line
always generates a new cluster with itself as the cluster representative, a surro-
gate line for the cluster contents. For every other incoming line the most similar
currently existing cluster is identified by comparing the Levenshtein distances
between all cluster representatives and the line at hand. The processed line is
then either allocated to the best fitting cluster or forms a new cluster with itself
as the representative if the similarity does not exceed a predefined threshold t.

This clustering procedure is repeated for the log lines of every time win-
dow. The result is an ordered sequence of independent cluster maps C, C′, C′′, ....
While the sequence itself represents a dynamic view of the data, every cluster
map created in a single time window only shows static information about the
lines that occurred within that window. The sequence of these static snapshots
is a time-series that only provides information about the development of the



cluster maps as a whole, e.g., the total number of clusters in each map. How-
ever, no dynamic features of individual clusters can be derived. It is not trivial
to determine whether a cluster C ∈ C transformed into another cluster C ′ ∈ C′
due to the fact that a set of log lines from a different time window was used
to generate the resulting cluster. This is due to the nature of log lines that are
only observed once in a specific point of time, while other applications employing
CE may not face this problem as they are able to observe features of the same
element over several consecutive time windows.

Fig. 4. Solid lines: Construction of cluster map. Dashed lines: Log lines allocated to
neighboring map.

In order to overcome the problem of a missing link between the cluster maps,
we propose the following model: Every log line is not only clustered once to es-
tablish the cluster map in the time window in which it occurred, but is also allo-
cated to the cluster maps created in the preceding and succeeding time windows.
These two cases are called construction and allocation phase respectively. The
construction phase establishes the cluster map as previously described and each
cluster stores the references to the lines that it contains. The allocation phase
allocates the lines to their most similar clusters from the neighboring cluster
maps. This is also carried out using the incremental clustering algorithm, with
the difference that no new clusters are generated and no existing clusters are
changed, but only additional references to the allocated lines are stored.

Figure 4 shows the phases for two consecutive cluster maps. The solid lines
represent the construction of the cluster maps C and C′ by the log lines s1, ..., s11

that occurred in the respective time window, e.g., clusters C4 and C© store
references to the lines in R4curr and R©curr respectively, and C ′4 and C ′©
store their references in R′4curr and R′©curr. The dashed lines represent the
allocation of the lines into the neighboring cluster maps. Clusters in C store
references to allocated log lines from the succeeding time window in R4next and
R©next. Analogously, clusters in C′ store references to allocated log lines from
the preceding time window in R′4prev and R′©prev. Note that in the displayed
example, s3 was allocated to C4 in C but to C© in C′. Further, s5 and s9 are



not allocated at all. The following section describes how this model is used for
tracking individual clusters over multiple time windows.

4.2 Tracking

For any cluster C ∈ C and any other cluster C ′ ∈ C′, a metric is required that
measures whether it is likely that C transformed into C ′, i.e., whether both clus-
ters contain logs from the same system process. An intuitive metric that describes
the relatedness of C and C ′ is their fraction of shared members. As previously
mentioned, it is not possible to determine which members of each cluster are
identical and it is therefore necessary to make use of the previously introduced
clustering model that contains references to the neighboring lines. There exists
an overlap metric based on the Jaccard coefficient for binary sets introduced in
[7] that was adapted for our model by formulating it in the following way:

overlap(C,C ′) =

∣∣(Rcurr ∩R′prev) ∪ (Rnext ∩R′curr)
∣∣∣∣R′curr ∪R′prev ∪Rnext ∪Rcurr∣∣ (1)

Note that the sets of references Rcurr and R′prev both correspond to log lines that
were used to create cluster map C and can thus be reasonably intersected, while
Rnext and R′curr both reference log lines from cluster map C′. The overlap lies in
the interval [0, 1], where 1 indicates a perfect match, i.e., all log lines from one
cluster were allocated into the other cluster, and 0 indicates a total mismatch.

Clusters can also be tracked over multiple time windows by applying the same
idea to C ′ and C ′′, C ′′ and C ′′′, and so on. In a simplistic setting where clusters
remain very stable over time, this is sufficient for tracking all log line clusters
separately. However, in realistic scenarios with changing environments clusters
frequently undergo transitions such as splits or merges which negatively influence
the overlap and may indicate anomalies. In the following chapter, the tracking
of clusters is therefore extended with a mechanism for handling transitions.

4.3 Transitions

Clusters are subject to change over time. There exist internal transitions that
only influence individual clusters within single time windows, and external tran-
sitions that affect other clusters as well [15]. We consider the cluster size denoted
by |C| as the most important internal feature as it directly corresponds to the
frequency of log lines allocated to cluster C. Formally, a cluster C grows in size
from one time step to another if |C ′| > |C|, shrinks if |C ′| < |C| and remains
of constant size otherwise. Alternative internal features derived from the distri-
bution of the cluster members are their compactness measured by the standard
deviation, their relative position as well as their asymmetry, i.e., their skewness.

Clusters from different time windows are affected by external transitions.
In the following, θ is a minimum threshold for the overlap defined in Equation
(1) and θpart is a minimum threshold for partial overlaps that is relevant for
splits and merges. In general, partially overlapping clusters yield smaller overlap
scores, thus θpart < θ. We take the following external transitions into account:



1. Survival: A cluster C survives and transforms into C ′ if overlap(C,C ′) > θ
and there exists no other cluster B ∈ C or B′ ∈ C′ so that overlap(B,C ′) >
θpart or overlap(C,B′) > θpart.

2. Split: A cluster C splits into the parts C ′1, C
′
2, ..., C

′
p if all individual

parts share a minimum amount of similarity with the original cluster, i.e.,
overlap(C,C ′i) > θpart,∀i, and the union of all parts matches the original
cluster, i.e., overlap(C,

⋃
C ′i) > θ. There must not exist any other cluster

that yields an overlap larger than θpart with any of the clusters involved.
3. Absorption: The group of clusters C1, C2, ..., Cp merge into a larger cluster
C ′ if all individual parts share a minimum amount of similarity with the
resulting cluster, i.e., overlap(Ci, C

′) > θpart,∀i, and the union of all parts
matches the resulting cluster, i.e., overlap(

⋃
Ci, C

′) > θ. Again, there must
not exist any other cluster that yields an overlap larger than θpart with any
of the clusters involved.

4. Disappearance or Emergence: A cluster C disappears or a cluster C ′ emerges
if none of the above cases holds true.

By this reasoning it is not possible that a connection between two clusters is
established if their overlap does not exceed θpart, which prevents partial clusters
that do not exceed this threshold from contributing to the aggregated cluster in
the case of a split or merge. In order to track single clusters it is often necessary to
follow a specific “path” when a split or merge occurs. We suggest to prefer paths
to clusters based on the highest achieved overlap, largest cluster size, longest
time that the cluster exists or combinations of these.

4.4 Evolution Metrics

Knowing all the interdependencies and evolutionary relationships between the
clusters from at least two consecutive time windows, it is possible to derive in-
depth information about individual clusters and the interactions between clus-
ters. Definite features such as the cluster size that directly corresponds to the
frequency of the log lines within a time window are relevant metrics for anomaly
detection, however do not necessarily indicate anomalies regarding changes of
cluster members.

A more in-depth anomaly detection therefore requires the computation of
additional metrics that also take the effects of cluster transitions into account.
Toyoda and Kitsuregawa [16] applied several inter-cluster metrics in CE analysis
that were adapted for our purposes. For example, we compute the stability of a
cluster by s =

∣∣R′prev∣∣ + |Rcurr| − 2 ·
∣∣R′prev ∩Rcurr∣∣, where low scores indicate

small changes of the cluster and vice versa. For a better comparison with other
clusters, a relative version of the metric is computed by dividing the result by∣∣R′prev∣∣ + |Rcurr|. There exist numerous other metrics that each take specific
types of migrations of cluster members into account.

A simple anomaly detection tool could use any of the desired metrics, com-
pare them with some predefined thresholds and raising alarms if one or more of
them exceeds this threshold. Even more effectively, these metrics conveniently
form time-series and can thus be analyzed with TSA methods.



5 Time-series Analysis

The time-series derived from metrics such as the cluster size are the founda-
tion for analytical anomaly detection. This section therefore describes how TSA
methods are used to model the cluster developments and perform anomaly de-
tection by predicting future values of the time-series.

Model. Time-series are sequences of values associated with specific time
points. For our purposes, a time step therefore describes the status of the internal
and external transitions and their corresponding metrics of each cluster at the
end of a time window. These sequences are modeled using appropriate methods
such as autoregressive integrated moving-average (ARIMA) processes. ARIMA
is a well-reasearched modeling technique for TSA that is able to include the
effects of trends and seasonal behavior in its approximations [6].

Clearly, the length of the time-series is ever increasing due to the constant
stream of log messages and at one point will become problematic either by lack of
memory or by the fact that fitting an ARIMA model requires too much runtime.
As a solution, only a certain amount of the most recent values are stored and
used for the model as older values are of less relevance.

Forecast. With appropriate estimations for the parameters, an extrapolation
of the model into the future allows the computation of a forecast for the value
directly following the last known value. In our experiments an ARIMA model is
fitted in every time step and we are interested only in predictions one time step
ahead rather than long-term forecasts.

The smoothness of the path that a time-series follows can be highly different.
Therefore, neither a threshold for the absolute nor the relative deviation between
a prediction and the actual value is an appropriate choice for anomaly detection.
Assuming independent and normally distributed errors, the measured variance of
previous values is therefore used to generate a prediction interval which contains
the future value with a given probability. Using the ARIMA estimate ŷt, this
interval is computed by

It =
[
ŷt −Z1−α2 se, ŷt + Z1−α2 se

]
(2)

where Z1−α2 is the quantile 1 − α
2 of the standard normal distribution and se

is the standard deviation of the error, se =
√

1
n−1

∑
(yt − ȳt)2. Correlation.

Some types of log lines appear with almost identical frequencies during certain
intervals, either because the processes that generate them are linked in a tech-
nical way so that a log line always has to be followed by another line, or the
processes just happen to overlap in their periodical cycles. In any way, the time-
series of these clusters follow a similar pattern and they are expected to continue
this consistent behavior in the future. The relationship between two time-series
yt, zt is expressed by the cross-correlation function [6], which can be estimated
for any lag k as

CCFk =


∑N
t=k+1(yt−ȳ)·(zt−k−z̄)√∑N
t=1(yt−ȳ)2

√∑N
t=1(zt−z̄)2

if k ≥ 0∑N+k
t=1 (yt−ȳ)·(zt−k−z̄)√∑N

t=1(yt−ȳ)2
√∑N

t=1(zt−z̄)2
if k < 0

(3)



where ȳ and z̄ are the arithmetic means of yt and zt, respectively. Using the cor-
relation as a measure of similarity allows grouping related time-series together.
Detection. For every evolving cluster, the anomaly detection algorithm checks
whether the actual retrieved value lies within the boundaries of the forecasted
prediction limits calculated according to Equation 2. An anomaly is detected if
the actual values falls outside of that prediction interval, i.e., yt /∈ It. Figure
3 shows the iteratively constructed prediction intervals forming “tubes” around
the time-series. The large numbers of clusters, time steps and the statistical
chance of random fluctuations causing false alarms often make it difficult to pay
attention to all detected anomalies. We therefore suggest to combine the anoma-
lies identified for each cluster development into a single score. At first, we mirror
anomalous points that lie below the tube on the upper side by

st =

{
yt if yt > ŷt + Z1−α2 se

2ŷt − yt if yt < ŷt −Z1−α2 se
(4)

With the time period τt describing the number of time steps a cluster is already
existing we define CA,t as the set of clusters that contain anomalies at time step
t and exist for at least 2 time steps, i.e., τt ≥ 2. We then define the anomaly
score at for every time step by

at = 1−
∑
Ct∈CA,t

((
ŷt + Z1−α2 se

)
· log (τt)

)
|CA,t|

∑
Ct∈CA,t (st · log (τt))

(5)

When there is no anomaly occurring in any cluster at a specific time step, the
anomaly score is set to 0. The upper prediction limit in the numerator and the
actual value in the denominator ensure that at ∈ [0, 1], with 0 meaning that no
anomaly occurred and scores close to 1 indicating a strong anomaly. Dividing
by |CA,t| and incorporating the cluster existence time τt ensures that anomalies
detected in multiple clusters and clusters that have been existing for a longer
time yield higher anomaly scores. The logarithm is used to dampen the influence
of clusters with comparatively large τt.

Finally, we detect anomalies based on changes in correlation. Clusters which
correlate with each other over a long time during normal system operation should
continue to do so in the future. In the case that some of these cluster perma-
nently stop correlating, an incident causing this change must have occurred and
should thus be reported as an anomaly. The same reasoning can be applied to
clusters which did not share any relationship but suddenly start correlating.
Therefore, after the correlation analysis has been carried out sufficiently many
times to ensure stable sets of correlating clusters, such anomalies are detected
by comparing which members joined and left these sets.

6 Evaluation

This section describes the evaluation of the introduced anomaly detection method-
ology. At first, the attack scenario and evaluation method are outlined. Then
the detection capabilities of our method with different values for the similarity
threshold and time window size are assessed and discussed.



6.1 Attack Scenario

In order to identify many clusters, we pursue high log data diversity. For this, we
propose the following evaluation scenario that adapts an approach introduced
in [14]: A MANTIS Bug Tracker System3 is deployed on an Apache Web Server.
Several users frequently perform normal actions on the hosted website, e.g., re-
porting and editing bugs. At some point, an unauthorized person gains access
to the system with user credentials stolen in a social engineering attack. The
person then continues to browse on the website, however following a different
scheme, e.g., searching more frequently for open issues which simulates suspi-
cious espionage activities. Such actions do not cohere with the behavior of the
other users and we therefore expect to observe corresponding alterations in the
developments of the log clusters. Due to the fact that only the probabilities for
clicking on certain buttons are changed, we expect that the log lines produced
by the attacker will be clustered together with the log lines describing normal
behavior and that this causes an increase in the measured cluster size. In ad-
dition, an automatized program that checks for updates in regular intervals is
compromised by the attacker and changes its periodic behavior. In this case, we
expect that the changes of the periodic cycles are also reported as anomalies.
The injected attacks include one missing periodic pulse, two sudden increases of
cluster size with different length and one slowly increasing cluster size.

6.2 Evaluation Environment

The log data was generated on a general purpose workstation, with an Intel Xeon
CPU E5-1620 v2 at 3.70 GHz 8 cores and 16 GB memory, running Ubuntu 16.04
LTS operating system. The workstation runs a virtual Apache Web server host-
ing the MANTIS Bug Tracker System, a MySQL database and a reverse proxy.
The log messages are aggregated with syslog. The anomaly detection algorithm
was implemented in Java version 1.8.0.141 and runs on a 64-bit Windows 7
machine, with an Intel i7-3770 CPU at 3.4 GHz and 8 GB memory.

6.3 Method

The log data was collected for 96 hours from the previously mentioned Bug
Tracker System. Furthermore, sample log lines that correspond to the injected
system changes were extracted. These lines were aggregated with their respective
occurrence time points in a ground truth table. One of these entries is counted
as a true positive (TP ) if the algorithm detects an anomalous log cluster with
a representative similar to the log line specified in the ground truth table, i.e.,
the computed string similarity is not smaller than the similarity threshold t
used during clustering, and additionally the detection time is not earlier than 30
minutes or later than 60 minutes of the time specified in the ground truth table.
If one of these requirements is not met, the entry is counted as a false negative
(FN). Detected anomalies that do not correspond to any entries are counted as
false positives (FP ). True negatives (TN) are determined computationally.

3 https://www.mantisbt.org/



With this setting, statistically relevant characteristics regarding the qual-
ity of the resulting classification were measured. These include the true pos-
itive rate (TPR = TP

TP+FN ), false positive rate (FPR = FP
FP+TN ), precision

(P = TP
TP+FP ) and recall (R = TPR). Plotting the latter two against each

other leads to the Receiver Operating Characteristic (ROC) curve, a common
evaluation and comparison method for classification systems. Curves are created
by running the anomaly detection algorithm with different parameter settings,
with well-performing classifiers being located in the top-left corner of the ROC
diagram (high TPR, low FPR). We also added the first median as it describes
the performance of a random guesser and every reasonable classifier has to lie
above this line. Finally, also the well-known F1 − score = 2·P ·R

P+R is computed.

6.4 Results

Figure 3 shows the cluster size developments of two log line clusters, the one-step
ahead prediction limits forming tubes around the curves and the anomalies that
are detected whenever the actual size falls outside of this tube. The present types
of anomalies in the plot are: (a) a periodic process skipping one of its peaks, (b)
a spike formed by a rapid short-term increase in line frequency, (c) a plateau
formed by a long-term frequency increase, (d) a false positive and (e) a slowly
increasing trend. The curve in the top part of the figure corresponds to a clus-
ter affected by all injected anomalies. While anomalies (a)-(c) are appropriately
detected, anomaly (e) is not detected in this cluster because the model adapts
to the slow increase of frequency that occurs within the prediction boundaries,
thereby learning the anomalous behavior without triggering an alarm. We in-
tentionally injected (e) in order to show these problems that occur with most
self-learning models. These issues can be solved by employing change point anal-
ysis methods that detect long-term changes in trends [10]. The bottom part of
the figure corresponds to a cluster containing only log lines that are specifically
affected by anomalies (c) and (e). Accordingly, the anomalies manifest them-
selves more clearly and the high deviations from the normal behavior makes
their detection easier. The fact that each of the numerous evolving clusters are
specific to certain log line types is a major advantage of our method. In partic-
ular, more than 300 evolving clusters representing more than 90% of the total
amount of log lines were identified.

The anomaly score aggregated over all evolving clusters that exist for at least
20 time steps is displayed in Fig. 5. The figure clearly shows that the anomaly
score increases at the beginning and end of every attack interval. This corre-
sponds to the fact that our algorithm detects changes of system behavior, but
almost immediately adapts to the new state. Only returning from this anomalous
state to the normal behavior is again detected as an anomaly.

Different parameters were used to create the ROC curves displayed in Fig. 6.
In the left plot, the similarity threshold t ∈ [0, 1] from the incremental clustering
procedure was varied. A high similarity threshold causes that only highly similar
lines are allocated to the same cluster, i.e., the total number of clusters per time
window increases. A low similarity threshold causes the opposite. We discovered



Fig. 5. The aggregated anomaly score displayed as a time-series and correctly increas-
ing when the system behavior changes (red shaded intervals).

that low similarity thresholds (t < 0.5) cause too many different log line types
being grouped into the same clusters and the cluster representatives therefore
not appropriately describing their content. This in turn leads to mismatching
clusters between the time windows that do not reach the minimum required
threshold for establishing a connection.

The curves were created by changing the prediction level (1 − α), i.e., the
width of the prediction interval, with narrow tubes leading to higher TPR and
FPR and broad tubes leading to lower TPR and FPR. Favorable values (high
TPR, low FPR) are located close to the top-left corner of the plot. The figure
shows that a moderate width is superior to the extremes as they suffer from either
low TPR or high FPR. All threshold values yield reasonably good performances
in the ROC plot because our injected anomalies always manifest themselves
in multiple clusters, but there is a preference towards thresholds around 0.85
achieving TPR = 61.8% with only FPR = 0.7%. In general, higher thresholds
enable an increased granularity and should therefore be preferred for detecting
anomalies that only affect a single or few log line types.
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Fig. 6. Left: ROC curves for different threshold values. Right: ROC curves for different
time window sizes.



The top left part of Fig. 7 shows the runtime with respect to different thresh-
old values. Moderate threshold values yield lower runtimes then values closer to
0 or 1. The top right part of the figure shows that the runtime scales linearly with
the number of log lines, which is important for processing continuous streams.
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Fig. 7. Left: Runtime comparison for different parameter settings. Right: Runtime
measured with respect to the number of processed log line shows linear scalability. Top:
Threshold as changed parameter. Bottom: Time window size as changed parameter.

In addition to the threshold, the influence of the time window size was inves-
tigated. The right side of Fig. 6 shows ROC curves where the same data set was
analyzed with a similarity threshold of 0.9 and varying time window sizes. The
curves indicate that good results are achieved with time window sizes similar to
the attack durations (10-30 minutes). In general, very large time windows are not
sufficiently fine-grained and therefore easily miss anomalies that only occur dur-
ing very short intervals. Clearly, smaller time windows yield finer granularities
(i.e., more time steps in any given period) and also reduce the average reaction
time, i.e., the average amount of time that passes between an anomaly occurring
and being detected ( time window2 ). On the other hand, time windows smaller than
the appearance frequency of certain log line types may result in incomplete clus-
ter maps that do not contain evolving clusters of these logs. Thus, the correct
choice for the time window size largely depends on the log frequencies.

Finally, the measurements regarding the runtime are shown in the bottom
part of Fig. 7. Time window sizes that performed well in the ROC analysis also



showed low runtimes, because generating the time-series model is easier when
the time window is aligned to the period. Again, the runtimes scaled linearly
with the number of log lines independent from the size of the time window.

For brevity, we only discuss the results of the evaluation centered around the
F1− score but omit the plots. The results showed that the recall increases for a
higher threshold almost up to 1. Moreover, the size of the prediction interval had
a clear influence on the recall for any given threshold level, with smaller sizes
increasing the achieved recall score. This is due to the fact that actual anomalies
fall outside of the tube more easily and thus improve the recall. While the preci-
sion also improves with a higher threshold, the results showed just the opposite
characteristic regarding the prediction interval size, with large tubes increasing
the precision. This is due to the fact that from all the detected anomalies, only
highly diverging points that are likely to be actual anomalies exceeded the limits
of the tube. For high similarity thresholds, precision scores between 0.2 and 0.3
are reached. Only when precision and recall are combined in the F1− score the
superiority of moderate tube sizes over the extremes becomes apparent. These
observations emphasize the importance of the tube size and confirm the superi-
ority of higher similarity thresholds already ascertained in the ROC analysis.

7 Conclusion and Future Work

In this work we introduced a dynamic anomaly detection algorithm for log data.
By deploying an incremental clustering algorithm on multiple time windows
rather than the whole data, we were able to establish a sequence of static cluster
maps that collectively represent dynamic system behavior. We used cluster evolu-
tion techniques in order to identify developments of single clusters and employed
time-series analysis for detecting anomalous deviations of relevant metrics.

The evaluation showed that clusters formed by groups of log lines belonging
to a certain event are successfully tracked over time. Furthermore, the results
showed that injected anomalies manifested themselves as sudden changes in the
generated time-series and were appropriately detected by our algorithm.

We computed the overlap between cluster maps from two neighboring time
windows. However, the quality of the connections between clusters could be
enhanced by taking more distanced time windows into account. Moreover, there
exist other time-series models able to predict future values, some of which may
show a higher precision or runtime enhancements compared to ARIMA models.

As most unsupervised self-learners, our model suffers from poisoning of the
data, i.e., anomalous behavior affecting future detections [1]. For example, reg-
ularly occurring log lines from malicious processes are learned after some time.
An attacker is able to exploit this vulnerability by carefully injecting log lines
that slowly adapt the learner to the changed system behavior. We are planning
to investigate methods for change point analysis in order to solve these issues.
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