A Framework for Cyber Threat Intelligence Extraction from Raw Log Data

Max Landauer, Florian Skopik, Markus Wurzenberger, Wolfgang Hotwagner

Dept. for Digital Safety and Security
Austrian Institute of Technology
Vienna, Austria
firstname.lastname @ait.ac.at

Abstract—Intrusion Detection Systems (IDS) rely on the
availability and correctness of Indicators of Compromise (IoC),
i.e., artifacts such as IP addresses that are known to correspond
to malicious system activities. However, the simple nature and
limited validity of these indicators impairs protection against
cyber threats. Tactics, Techniques and Procedures (TTP) pro-
vide abstract information on attacker behavior, but are only
available in human-readable format that prevents automatic
detection using IDSs. In this paper we therefore propose an
approach that extracts cyber threat intelligence from raw log
data and combines the advantages of IoCs and TTPs by
producing detectable patterns of complex system behavior.
Other than existing approaches, our approach employs log
data anomaly detection to disclose suspicious log events, which
are used for iterative clustering, pattern recognition, and
refinement. Our evaluations show that automatically extracted
threat intelligence corresponding to a multi-step attack is
suitable for detection of the same attack on another system.

Keywords-threat intelligence; log data; anomaly detection;
pattern recognition;

I. INTRODUCTION

The widespread availability of attack tool kits make it easy
for adversaries to target all kinds of digital systems. Cyber
security counteracts these threats by employing Intrusion
Detection Systems (IDS) that continuously monitor systems
for so-called Indicators of Compromise (IoC), i.e., artifacts
that signify that security has been breached. These indicators
are usually distributed by Cyber Threat Intelligence (CTI)
vendors that manually analyze and reverse-engineer attacks.

Unfortunately, IoCs are often criticized for not providing
sufficient protection against advanced threats due to their
simplicity and limited validity [1], [2], [3]. Generally valid
information on attacker Tactics, Techniques and Procedures
(TTP) that describes threats in a more abstract way is
available, but typically only exists in human-readable format.
This impedes automated monitoring by IDS [4], [2].

Thus, there is a need for actionable CTI of detectable
behavior patterns consumable by IDS. However, as pointed
out by Navarro et al. [5] in their recent survey, existing
methods rely on manual generation of this kind of CTI,
which is slow, time-consuming, requires expert knowledge,
and is prone to human errors. In addition, manually defined
CTI does not protect against unknown attacks.

Andreas Rauber
Inst. of Information Systems Engineering
Vienna University of Technology
Vienna, Austria
rauber@ifs.tuwien.ac.at

We propose to automatically generate CTI from raw log
events to address these issues. We thereby employ anomaly
detection techniques for the disclosure of suspicious sys-
tem activities and use methods from pattern recognition to
combine anomalies and form complex scenarios. This has
several advantages over existing methods: (i) It is difficult
for adversaries to prevent that attacks manifest themselves in
low-level log events that describe the system behavior in de-
tail. (ii) Anomaly detection is an unsupervised approach that
enables the detection of unknown attacks. (iii) Leveraging
complex attack patterns enables detection of attacks that can-
not be described by simple IoCs, such as event correlations,
parameter values, or context data. (iv) Other than human-
readable descriptions, these attack patterns allow automatic
consumption and detection by IDSs.

Several challenges must be overcome by such an ap-
proach. While log data is semantically rich, analysis is
difficult due to its unstructured nature. In addition, attacks
carried out on separate systems may manifest themselves
differently in log data, making automatic comparisons non-
trivial. Another issue is that anomaly detection is prone
to high false alarm rates, which impairs the confidence in
the generated CTI. Finally, with large numbers of events
occurring on systems, linking related anomalies is difficult.

In this paper we tackle these challenges by introducing
a novel log processing pipeline. The pipeline makes use of
a parser tree to identify events and dissect relevant values
from a continuous stream of log data. Existing anomaly
detection algorithms are then used to disclose artifacts that
are possibly related to malicious activities. The system
iteratively applies clustering, pattern recognition, and data
enrichment to transform the anomalies into abstract attack
patterns, while at the same time reducing the influence
of false positives. Sharing the extracted threat intelligence
allows other organizations affected by similar threats to
detect attacks in an early stage.

We summarize our contributions as follows:

o A review of existing definitions and shortcomings of

available cyber threat intelligence,

« anovel model for the automatic extraction of actionable

cyber threat intelligence from raw log data, and

o an evaluation thereof within an illustrative scenario.

The remainder of this paper is structured as follows.
Section II reviews and criticizes existing threat intelligence
concepts. Section III outlines a model for the generation of
actionable threat intelligence from raw log data. Technical
implementation and algorithmic details of this model are
stated in Sect. IV. The evaluation results of the proposed
approach are given in Sect. V and discussed in Sect. VI
An overview of related works is given in Sect. VIIL. Finally,
Sect. VIII concludes the paper.

II. BACKGROUND

With an increasing number of cyber incidents occurring
every year and organizations investing large amounts of
money for protection, cyber threat intelligence has become
one of the most relevant topics in business and science.
However, many associated concepts and notions are used
interchangeably. We thus devote this section to review ex-
isting viewpoints and clarify our understanding of the terms.

A. Cyber Threat Intelligence

The term Cyber Threat Intelligence (CTI) is used highly
ambiguously throughout all kinds of literature. In particular,
it is unclear at what point any available information on cyber
threats is regarded intelligent rather than just data.

Chismon and Ruks [3] define CTI through the process of
detecting and subsequently analyzing previously unknown
threats with the aim of understanding and mitigating risks.
Zhu et al. [6] state that unlike automatically collected
data, generating CTI encompasses manual threat analysis
and reasoning by domain experts. McMillan [7] provides
a definition that involves evidence-based knowledge and
context information on mechanisms, indicators, implications,
and actionable advice about existing or emerging threats.
Dalziel et al. [8] state that CTI must be refined, analyzed, and
processed in order to be relevant, actionable, and valuable.

The consensus of these definitions is that security-related
data needs to undergo a process of advanced analysis and en-
richment to provide usable insights into cyber threats and be
regarded as actionable CTI. The term actionable is thereby
used just as ambiguously as the term threat intelligence
itself. Dalziel et al. [8] denote CTI as actionable if it is
specific enough to enable decision-making and response to
present threats. Tounsi et al. [1] point out that outdated CTI
loses its actionability, but mention that fast sharing of CTI is
not sufficient to prevent targeted attacks. They also discuss
the relevance of standardized CTI formats to ensure data
quality and enable automated analysis. Popular CTI formats
are STIX [9], IODEF!, OpenIOCz, and CAPEC [10].

We conclude that actionability means that no additional
analyses are necessary to utilize available CTI; however,
the specific requirements on actionable CTI depend on the
desired use-case, such as detection, analysis, or containment.

Uhttp://xml.coverpages.org/iodef
Zhttps://www.fireeye.com/blog/threat-research/2013/10/openioc-basics

Chismon and Ruks [3] separate CTI into four subtypes:
(i) technical, i.e., low-level Indicators of Compromise (IoC)
with limited validity, (ii) tactical, i.e., low-level information
on Tactics, Techniques and Procedures (TTP) with longer
validity, (iii) operational, i.e., high-level details on imminent
threats, and (iv) strategic threat intelligence, i.e., high-level
reports on organizational risks. Due to their relevance to this
paper, we discuss IoCs and TTPs in the following sections.

B. Indicators of Compromise

IoCs are typically described as artifacts which presences
provide concrete evidence that system security was breached
with high confidence. The well-known STIX [9] format
defines indicators as “patterns that allow detection of suspi-
cious or malicious cyber activity”. Patterns thereby include
IP addresses, email addresses, domain names, and computed
indicators such as hash values. They are highly specific and
thus IDSs usually report only few false alarms.

The actionability of IoCs is debatable and depends on the
use-case at hand. On the one side, Tounsi et al. [1] state
that ToCs are immediately actionable, because they can be
automatically fed into Intrusion Detection Systems (IDS)
once they become available. On the other hand, detection
based on predefined IoCs is more reactive than proactive,
ie., detecting an IoC usually means that the system is
already compromised. Moreover, Rhoades [2] argues that
IoCs are too simple to identify complex malicious system
activities. Tounsi et al. [1] even state that a key failing of CTI
is that it is relatively simple for adversaries to ensure that
attacks generate no artifacts that match pre-existing 1oCs.

Another important aspect pointed out by Chismon and
Ruks [3] is that IoCs from different CTI feeds yield small
overlaps. Their explanation is twofold: First, it is easy to vary
attack parameters such as IPs. Second, existing CTI is not of
any intelligent value. Either way, these observations discredit
the actionability of IoCs. Finally, one more problem with
ToCs is that they are usually consumed by IDS without their
context of occurrence, i.e., an IoC is either observed in the
data or not [2]. To alleviate these issues, a more abstract way
of describing threats is required. In the following section,
TTPs are reviewed as a method to provide such information.

C. Tactics, Techniques and Procedures

While IoCs are detective in nature, Tactics, Techniques
and Procedures (TTP) provide abstract and descriptive char-
acterizations of threats, typically in human-readable form
[9]. The main purpose of these descriptions is to detail
the modus operandi, i.e., actions that attackers carry out on
affected systems, and how these actions are carried out, e.g.,
exploits of certain vulnerabilities.

Among the advantages of TTPs over IoCs is that they
are valid for longer time spans and that their abstract
descriptions increase the difficulty of evasion by attackers.
The reason for both effects is that it is relatively difficult for

adversaries to discover completely new ways of executing
attacks in comparison to the low efforts of changing artifacts
such as IP addresses [1]. This is also represented in the so-
called “Pyramid of Pain” [11] that places TTPs as the most
valuable type of CTI on top and IoCs at the bottom.

The main problem is that it usually takes extensive
manual work and domain knowledge to generate TTPs on
an adequate level of abstraction. Furthermore, the currently
wide-spread human-readable descriptions of TTPs impede
their usage for automatic detection [4], [2].

For example, consider the entry “Embedding Scripts
within Scripts” (CAPEC-19) in the CAPEC database®. The
attack is detailed on the “Standard” abstraction level and
contains an extensive description of the typical attack exe-
cution flow. However, based on the available texts, it is not
possible to manually or automatically extract indicators that
support attack detection for particular systems.

Enriching existing manually defined TTPs with measur-
able indicators that support automatic detection of attacks or
attack steps could improve this situation. Our research efforts
are therefore directed towards bringing IoCs and TTPs closer
together by combining and mapping IoCs to TTPs to yield
more intelligent indicators.

III. CTI GENERATION

We address the outlined shortcomings of CTI concepts
regarding their applicability by proposing a method for
automatic or semi-automatic extraction of CTI from raw log
data. In this section, we provide the problem statement, char-
acterize log data as an appropriate data source, and introduce
a model for CTI generation by iterative enhancement.

A. Problem Statement

Generating CTI is a time- and labor-consuming task
that requires manually gathering, reviewing, consolidating,
and integrating data from various sources into an abstract,
understandable and shareable format. It is state-of-the-art
that the resulting CTI involves simple IoCs that enable
automatic detection and more complex TTPs for human
consumption. Unfortunately, the actionability of both IoCs
and TTPs suffers from the following shortcomings:

o I0Cs suffer from limited validity and reliability. The
patterns are too simple and easy to evade for attackers.
Thus, IoCs primarily provide temporary protection.

o TTPs fail to provide detectable patterns. Their de-
scriptions are too abstract and lack measurable indica-
tors for automatic detection. Therefore, TTPs mostly
support attack analysis in hindsight rather than provid-
ing proactive protection mechanisms.

Currently, there is no proper way to combine the benefits
of IoCs and TTPs, i.e., provide permanently valid TTPs
that offer measurable and therefore detectable indicators. It

3https://capec.mitre.org/

is non-trivial to represent TTPs using complex patterns of
indicators, because attacks often occur as variations and are
executed differently depending on technical environments.

These issues are tackled by our approach, which auto-
matically generates detectable TTPs. Thereby, the selection
of data sources is crucial. In the following section, we
discuss the characteristics of log data to show its usefulness
regarding the extraction of indicators.

B. Data Sources

IoCs in CTI feeds usually contain single tokens such
as IP addresses or file names that are suitable for threat
detection in diverse data sources. Other than most existing
tools that focus on network traffic, we encourage to carry
out analyses on system log data for a number of reasons:
First, log data is semantically more expressive, because it
contains human-readable phrases and parameters that were
consciously placed to describe the system state. Second, log
data not only includes what is communicated with other
machines, but provides insights into the processes running
on the machine. Third, encrypted network traffic makes
inspection of actual contents difficult, while system log data
is usually accessible in raw format.

In addition to event information such as accessed file
paths and executed commands, logs also frequently contain
information on the execution of these events, for example,
IDs of associated users. Moreover, context information can
be derived from the logs. Due to the fact that many processes
are timed or periodically recurring, event time is arguably
the most relevant context data available. Other information
includes the source of the log event, log sensor data such as
ID, location, or manufacturer, as well as system data [12].

Unfortunately, automated log analysis is non-trivial. In
particular, the syntax of human-readable natural language
present in system logs is difficult to parse, especially when
the log format is not specified or known. In addition, log
formats are subject to change over time and thus parsers
need to be adapted regularly. Despite these challenges, our
focus in this work lies on system log data. Our proposed
concepts however can be applied with any type of log data.

C. Anomaly Detection

Traditional IDS use IoCs for blacklisting, i.e., each de-
tected IoC indicates a security breach. Anomaly detection
on the other hand is a whitelisting approach, i.e., poten-
tial threats are indicated by deviations from a self-learned
model of normal behavior. A key design principle of our
approach is that indicators for blacklisting are effectively
mined through anomaly detection. For example, consider a
sophisticated anomaly detection algorithm that recognizes
the appearance of an abnormal IP, hash, url, process, or file
as a consequence of malicious activities. It is possible to use
the artifact as an indicator that enables detection of the same
adversarial activity in the future or on another system.

Anomaly detection offers a number of advantages. First,
the discovery of previously unknown attacks is possible
without any need to possess prior information on the threat
actor, the system at hand, or the attack itself. Second, timely
responses to threats are enabled, because anomaly detection
is a mostly automatic process that supports online moni-
toring. Third, the effort of manually gathering indicators
decreases. Rather than analyzing the logs by hand, cyber
security experts are presented with anomalies almost imme-
diately after they occur, making forensic investigations easier
and faster. Anomaly detection is further able to identify
subtle divergences and side-effects accompanied by attacks
that humans may easily oversee, but are nonetheless valid
candidates for indicators, such as missing events.

Unfortunately, anomaly detection also faces drawbacks.
Foremost, false positive rates are typically higher in compar-
ison to blacklisting approaches. The reason for this is that
system behavior is often affected by fluctuations that are
not caused by attacks, but rather by random events, erratic
user behavior, arbitrarily scheduled tasks, or changes in the
system landscape. For example, an unknown IP occurring
in the logs more likely belongs to a benign new machine
added to the network, rather than an adversary. There is
usually no way around manually verifying the anomalies and
adjusting the normal system behavior model if necessary. In
addition, anomaly detection systems suffer from poisoning,
i.e., detection capabilities are impaired when models are
trained on systems already affected by attacks, and attackers
may thus attempt to inject artifacts that neutralize detectors.

Clearly, the risk of deriving inaccurate IoCs from false
positives seems unpromising and single anomalies cannot
be considered TTPs. In the following, we therefore propose
a model to transform anomalies into superior patterns, while
at the same time reduce the influence of false positives.

D. Concept for CTI Generation

Our model for log-based CTI extraction employs anomaly
detection as an initial step and involves a sequence of activ-
ities that progressively add context information to the data
and enhance it with respect to the abstraction level. Figure 1
displays the overall procedure, including a schematic exam-
ple. Note that the use of anomaly detection is a major differ-
ence to related approaches based on the CRIM architecture
[13], which obtain alerts from rule-based detectors. Our
approach is thus in accordance with the recommendations by
Navarro et al. [5], who see a need to develop aggregation
and detection algorithms based on raw events rather than
well-formatted IDS alerts. In the following, we discuss the
steps required to transform anomalies into CTIL.

Anomaly Detection. The detection component continu-
ously reports anomalies. Every anomaly is primarily de-
fined by the feature that triggered the detection mechanism.
However, the anomalous feature alone is not necessarily an
appropriate indicator useful for CTI, because the occurrence

Anomaly Detection
WAnomalies QQO0QO00000
Verification and J
] Enrichment x
W Alerts AAR{HOO OO
~N)
Clustering E‘}Q e
W Alarms OAO0OQOOA OO0
Pattern H-[0A @-00
SCybgr Recognition *-000
::;?:Z *Attack patterns HelHO
Verification and
— Enrichment v
CTl HeHO
Figure 1. Procedure to transform anomalies to alerts, alarms, attack

patterns, and CTIL.

of the same feature in another context could be normal. For
example, 100 login attempts per minute may be normal on a
web server, but anomalous on a workstation. It is therefore
necessary to enrich each anomaly with context data.

Verification and Enrichment. Relevant context data in-
cludes the event time, related events such as events occurring
within small time frames, anomalous as well as normal
values and their respective positions in the event as well
as identifiers for the detector, log file, and system. Each
anomaly is transformed into an alert with attributes storing
contextual data as well as event and execution information.
Alerts should be sorted out by domain experts if they are
determined to be false positives.

Clustering. In busy systems, alerts occur frequently,
which can be overwhelming for analysts. Alert clustering,
i.e., allocating individual alerts to more abstract alarm
classes, provides a remedy to this problem. In order to
measure the similarity of alerts, we propose to compare
their contextual, execution, and event attributes, where more
identical values indicate a higher similarity, and vice versa.
In order to ensure that alarms are representative for their
allocated alerts, we append all alert attribute values to the
alarm, or insert wildcards if the values are too diverse.

Pattern Recognition. Some alarms occur frequently and
are part of different actions, making an allocation of alarms
to actions difficult. However, alarms often occur in groups,
for example, single actions carried out on computer systems
usually trigger sequences of events executed within short
time frames. Batches of alarms are in general better indi-
cators for specific actions than single alarms. We therefore
generate clusters of alarms that frequently occur together.
Thereby, we measure the similarity of alarm sequences by
computing the lengths of their common subsequences, where
longer sequences indicate a higher similarity, and vice versa.
We merge differing alarms that separate otherwise identical
subsequences by joining their attributes to generate patterns

that represent all their allocated alarm sequences. We refer
to the clustered sequences of alarms as action patterns.

Similar to alarms, actions are often executed in specific
sequences in order to achieve certain tasks. We pursue
an identical clustering strategy as for the generation of
action patterns and refer to the resulting classes of action
sequences as attack patterns. Variations of these attack
patterns are considered during merging, where actions that
provide equivalent capabilities are learned as alternatives
[14]. Such a repeating behavior with variations is common
in real-world scenarios, since adversaries frequently carry
out attacks multiple times and reuse their techniques [15].

Verification and Enrichment. Besides modifications of
attack steps, variations of action or attack patterns are also
linked to technical conditions, such as particular services
being available on the attacked system. Providing such data
greatly improves the efficacy of our approach by reducing
false positives during detection on other systems [13].

The resulting CTI alleviates the problems outlined in
the beginning of this section. First, our approach requires
minimal human intervention. Second, evasion is difficult,
because attacks are described on a system level. In addition,
our approach learns which steps, events, or artifacts are
constant in each attack manifestation. Finally, even complex
attacks are represented as patterns of detectable indicators.

IV. SYSTEM DESCRIPTION

We implemented a proof-of-concept for the approach
described in the previous section. In the following, we
provide an overview and discuss applied mechanisms.

A. Overview

We designed a pipeline that automatically processes sys-
tem log data and outputs attack patterns. Figure 2 displays an
overview that shows that the system consists of a logging in-
frastructure and four analytical modules for parsing, anoma-
lous system behavior detection, aggregation of anomalies
to alarms, and alarm pattern recognition. The figure also
depicts the data sent from one module to another with the
numbers (1)-(6). Note that these snippets are shortened to
fit the purpose of this visualization and that the actual data
objects contain considerably more information.

The sample logs (1) are Network Time Protocol (NTP)
events. We assume that it is possible to obtain anomaly-
free log data for training, before detection and generation
of attack patterns is carried out on the live system. In the
following, we discuss each analytical module in detail.

B. Procedure

As outlined in Sect. III-B, system log data (1) typically
contains unstructured text that requires preprocessing. We
pursue two main goals: First, classify each individual log
line as a log event, i.e., an abstract class that describes its
underlying trigger. For example, the first two sample lines

relate to the same event (“Listen and drop on”). Second,
extract values such as IP addresses in a structured way.

Parsing. Log data must be parsed to achieve these goals.
Existing approaches frequently use regular expressions to
parse logs, however, our approach employs a parser tree [16].
Nodes of a parser tree are tokens that are either constant
strings or variables of certain data types. The tree thus
represents the grammar of a log file in a compact format
and allows fast processing of lines.

The parser tree (2) for the NTP logs involves control
elements such as sequences and branches as well as token
elements that represent strings or variables. It involves a
sequence of a fixed string element for the ntpd service name,
an integer element for the process ID, and a branch followed
by multiple elements. There exist references (“ref”) for all
elements and values (“‘value”) that define constant strings.

As seen in the sample parsed logs (3), the parser tree
facilitates a structured way of accessing tokens through
paths, i.e., sequences of traversed nodes. For example, the
path “/ntpdSeqg/ntpd” indicates that log line /1 passed over
the sequence (“ntpdSeq”) and fixed string element (“ntpd”)
in the parser tree. The sample also shows that concrete values
are accessible through these paths, e.g., path “/ntpdSeq/pid”
points to process ID 16721. The event class of a log line is
determined by the set of all its paths, i.e., log lines traversing
the same paths correspond to the same log event.

Anomaly Detection. Parsed log data is suitable for
anomaly detection. We consider the following types of
anomalies relevant for our approach: (i) event-based outliers,
i.e., log lines that do not fit the parser tree and thus represent
new or unknown events, (ii) anomalous event sequences
or correlations, i.e., log events appearing in new orders,
(iii) timing-based anomalies, i.e., unusual inter-arrival time
between log events, (iv) frequency-based anomalies, i.e., log
events appearing too often or too rare within a certain time
window, (v) value-based outliers, i.e., parameter values such
as IP addresses that have not been observed before, (vi)
value-combination-based outliers, i.e., new combinations of
parameter values, and (vii) statistical anomalies, i.e., changes
of continuous or discrete distributions of parameter values.

Each detection of unusual system behavior produces an
anomaly e. The sample anomalies (4) show that different
attributes are used depending on the involved detectors. For
example, el provides a parser tree path and the associated IP
address, while e2 is unable to provide such details due to the
fact that event-based outliers are unparsable by definition.
Note that due to space limitations, we omit presenting all
attributes appended in the enrichment phase, but consider
these anomalies as alerts in the following, i.e., al = el,a2 =
e2,.... Note that we use subscripts to denote attributes, e.g.,
the anomalous value of alert al is al, = el, = 10.0.0.1.

Alarm generation. We intend to generate a set of alarms
B = {b1,02,...} based on the disclosed sequence of alerts
al, a2, ..., where each alert is allocated to exactly one alarm

(2) Log data parser tree

(4) Anomalies

(<Sequence ref="ntpdSeg"“> el = { Detector = ,Value-Detector™,

(5) Alarms
\ [bl = { Detector = \

<Fixed-String ref=“ntpd“ value=“ntpd[,/> Path = /ntpdSeqg/events/dropSeq/ip, ,Value-Detector"“,
<Integer ref=“pid“/> Value = 10.0.0.1, Paths =
<Branch ref=“events“> Msg = ,New value observed", {/ntpdSeqg/events/dropSeq/ip},
<Sequence ref=“dropSeg"“> }, Values =
<Fixed-String ref=“drop“ value= e2 = { Detector = ,Outlier-Detector", {10.0.0.1, 10.0.0.2}
“]: Listen and drop on “/> Msg = ,Unknown log format", PrecedingAlarms =
<Integer ref=“fd“/> b, {b2, b5, bl2},
e e3 = { Detector = ,Freg-Detector"™, },
</Sequence> Path= /ntpdSeq/events/normsSeq, b2 = { Detector =
<Sequence ref=“normSeqg“>...</Sequence> Occurrences 115, ,Outlier-Detector",
e Msg = ,Unusual high freq", .
</Branch> }, },
\</Sequence> | j \64 = { | j b3 = { . | }
t
Logging Infrastructure\ é | Parser Anomaly detection || Alarm generation I Pattern recognition
! - | I
Training log data —H»| Generate parser Baseline | | Alarms I | Attack Patterns |
~—— | - - B Outliers | . I A7
provide y 4 adjust .4—.' allocatey 4 adjust |, | Action Patterns |
P B Frequencies | i
Ivelogdatd i Parselog data Alert clustering ' .
— 1) " orre“z'a 1ons Pattern matching bb
Tl | |
ntpd[16721]: Listen and drop on 0 11 = { /ntpdSeq/ntpd, pl = { Pattern = [3\
vé4wildcard 0.0.0.0 UDP 123 /ntpdSeq/pid = 16721, cl = [bl, b2, b5, bl2, bl, b2, b5, bl2],
ntpd [16721]: Listen and drop on 1 /ntpdSeqg/events/dropSeq/drop, c2 = [b6, b6, b6, bl5, bl5, bl5, b8],
voewildcard :: UDP 123 /ntpdSeq/events/dropSeq/fd = 0, c3 = [b9, bl0, b9, bl0]
ntpd[16721]: Listen normally on 2 .]
lo 127.0.0.1 UDP 123 ¥, },
12 = p2 = { .)
(1) Raw log data (3) Parsed log data (6) Attack patterns

Figure 2.

and each alarm appropriately represents all allocated alerts.
This is performed through incremental clustering and merg-
ing. We use a similarity metric based on weighted attribute
matching, so that alerts and alarms with sufficiently many
common attributes are considered similar. In particular, we
compute the similarity between alert a and alarm b € B as

az; Nb .

sz if ag = by
z€{p,v,ep,ev,0} |a’x‘ (1)
0 otherwise

simy(a,b) =

where aq is the detector that raised alert a, set a, contains
the paths and set a, the corresponding anomalous values
of the alert, set a., contains all paths and set a, all
corresponding values of the affected event, set a, contains
related alarms, and w,, is the weight of attribute x. Note that
|a,| is the size of set a, and that weights should be selected
so that > w, = 1 holds. We consider alarms related to an
alert if they occur within a time window §,. before the alert.

The incremental clustering procedure that allocates each
alert a to one of the existing alarm classes b € B if the
similarity exceeds a certain threshold, i.e., simj(a,b) > 01,
and adds a as a new alarm otherwise, i.e., B = B U {a},
enables fast processing of incoming alerts in a single pass.
This also applies for merging, where alarms are updated
with additional attribute values from their allocated alerts,
ie., by =b,U{as},Vz € {p,v,ep, ev,0}. Since alerts and
alarms from different detectors are never similar according

CTI extraction pipeline that processes raw log data in four analytical modules. (1)-(6) represents sample data flow.

to Eq. 1, it is not possible that attributes are missing. The
sample alarms (5) show that resulting alarms cover multiple
alerts, e.g., alarm bl contains two anomalous IP addresses.

Pattern recognition. The output of the alert clustering
step is a continuous stream of alarms suitable for the
detection of frequent alarm patterns. As outlined in Sect.
III-D, patterns usually occur either on a relatively small time
scale, i.e., alarms that belong to a single action are executed
within milliseconds, or a much larger scale, i.e., sequences of
actions that are executed seconds apart. We therefore carry
out the frequent pattern detection on two levels: short-term
action patterns and long-term attack patterns.

On the short-term level, we measure the inter-arrival time
of alarms in order to locate subsequences that represent
actions. This is achieved by cutting off sequences when the
time difference to the next alarm exceeds a threshold 5. A
value of s = 0.1 seconds has proven useful in empirical
studies (cf. Sect. V). We then use incremental clustering to
generate sequences of alarms that represent actions on the
system. The Longest Common Subsequence (LCS) [17] is a
suitable similarity metric for this purpose, because it enables
the computation of a similarity between sequences as well as
the disclosure of common patterns. Since LCSs may consist
of interrupted patterns in the sequences, the results are robust
against misclassifications and outliers.

The clustering procedure is as follows: Each complete
alarm sequence s, i.e., a sequence of N alarms s =

é Delivery Enumeration Inspection Installation Cleanup A
2a)ls p - ; 5a) killall job.sh)
>> !
- 3a) Is /etc/cron.d > a) ec o. ' -
/var/www/job.sh

(1) Webshell upload (2b) pwd T (5b) cp job.sh)

v <3b) cat /etc/cron.d/... (4b) nc.traditional > v
(2¢) Is /var/www (5c) rm webshell)
o %
Figure 3. Multi-step attack executed on an Nginx web server. All steps are triggered by the attacker, except 4b which is triggered by the system itself.

b1,b2,...,bN that has no other alarms occurring within d; is
allocated to the most similar action pattern ¢ € C if their sim-
ilarity exceeds a certain threshold, i.e., sims(s, ¢) > 65, and
is added as a new action pattern otherwise, i.e., C = CU{s}.
Thereby, the similarity is computed by the relative LCS, i.e.,

LCS(s,c)

maz(|s|, |c[)

sima(s,c) = (2)

Each allocation of an alarm sequence s updates the
action pattern c to appropriately represent all allocated alarm
sequences. In particular, we merge different alarms in ¢ and
s that interrupt the LCS. For example, ¢ = b1,02,b3 and s =
b1, b4, b3 differ in the second position and merging will thus
update ¢ to ¢ = bl, b5, b3, where b5, = {b2, Ubd,},Vx €
{p,v,ep,ev,o}, ie., all attributes are merged. The action
pattern ¢ remains unchanged if merging is not possible due
to mismatching detectors or misaligned patterns.

We repeat this procedure with sequences of action pat-
terns. Another threshold ¢§; is used to disclose delimited
action sequences of length M, e.g., d = cl,c2,...,cM, and
LCS is used to cluster these sequences into attack patterns,
where each attack pattern p € P. A value of §; = 20
seconds has proven useful in empirical studies (cf. Sect.
V). We use the same similarity measure as before, i.e., d
is allocated to p if sima(d, p) > 6, and is added to the set
of action patterns otherwise, i.e., P = P U {d}. The figure
shows that each attack pattern (6) is a sequence of action
patterns that in turn consist of alarm sequences. All patterns
consist of alarms that are detectable, because their attributes
are comparable with logs and raised anomalies; thus, the
patterns themselves are detectable. In the following section,
we provide an example that demonstrates this functionality.

V. ILLUSTRATIVE SCENARIO AND EVALUATION

Our approach is evaluated on real data. In this section,
we outline the attack scenario and state the results.

A. Concept and Evaluation Environment

We demonstrate in an illustrative scenario that our ap-
proach is capable of extracting actionable CTI from raw log
data. We show this by automatically extracting detectable
TTPs that correspond to a multi-step attack carried out on
a Nginx web server. We then use these TTPs to detect
the same attack on an Apache web server. We selected

these two technologies, because the execution of the same
attack has different effects on the systems. In particular, web
root directories, users, and available libraries are different,
which are attributes that manifest themselves in the logs.
Moreover, we configured the web servers so that Nginx is
only accessible via https and Apache via http.

We set up the two virtual web servers to host the MANTIS
Bug Tracker*. Normal behavior is generated by virtual users
that perform tasks such as viewing and reporting bugs.
After 30 minutes of learning the normal behavior, we switch
our system to detection mode. After 30 more minutes, we
execute the attack three times with an interval of 20 minutes.

The entire time we collect system call (syscall) logs using
the audit daemon (auditd®) from the Linux Auditing System.
We select syscalls for several reasons: First, they provide a
low level view on system events. Second, they are available
for almost all systems and same tasks executed on different
machines generate similar syscalls. Finally, syscalls consist
of key-value pairs and it is thus easy to define a parser tree.

B. Attack

The multi-step attack carried out on the Nginx web server
is depicted in Fig. 3. The attack on Apache uses the Apache
web root directory. We set up a vulnerability on the web
servers that enables file uploads to arbitrary directories due
to insufficient input validation (CAPEC-126 in the CAPEC
database®). The attacker exploits this vulnerability to upload
a web shell (1, CAPEC-650) that provides remote access.
The attacker first inspects (2a-2c) the system to find a cron
job suitable for exploitation (3a-3b) and then injects a netcat
script (4a, CAPEC-19) in an existing cron job. This job is
executed by root and is thus able to open a netcat connection
(4b) with elevated privileges (CAPEC-233). The system
executes the script within the next 2 minutes. We finish the
intrusion by resetting the system to the normal state, i.e.,
killing the cron job (5a), overriding the injected script (5b),
and removing the uploaded webshell (5c¢).

C. Results
During the first 30 minutes, 40,000 syscalls that corre-

spond to normal system behavior were generated. For each

“https://www.mantisbt.org/
Shttps://linux.die.net/man/8/auditd
Ohttps://capec.mitre.org/

Anomalies per attack step

1000 —

m Nginx
500 O Apache
3
E 200 |
S 100 |
c
S 50
o
8 20+
E
2 10 o
ul | L
2]
= 2 g 2 2 5 2 e B & E
2 8 5 & 8 g 8 g 3 8 3
N <
Figure 4. Anomalous event counts for each of the attack steps. A similar

amount of anomalies is generated on the Nginx and Apache web server.

@@0@@0@
@®®@®@

Type: Value \/Type Combination

Path: /path/name Paths: [ouid, dev, mode, nametype]
Value: /var/www/ Values: [0, fc:00, 040755, PARENT]

Type Value
Path: /path/name
Value: /etc/ld.so.cache

Figure 5. Top: Attack pattern. Center: Action pattern of one attack step.
Bottom: Sample alarms, shortened for brevity.

execution of the attack, the anomaly detection component
raised around 1600 anomalies on Nginx and 1000 anomalies
on Apache. Figure 4 shows the number of anomalies associ-
ated with each attack step. The plot shows that the number of
anomalies varies greatly depending on the particular action
executed on the system. However, the plot also shows that
the command “Is” executed in steps 2a, 2c, and 3a yields
similar amounts of anomalies. Closer inspection showed that
most the types, sequences and parameter values are similar
across these steps. We therefore conclude that it is possible
to recognize particular actions by the syscall sequences they
generate. Another important aspect depicted in the plot is
that Nginx and Apache roughly produce the same amount
of anomalies, indicating that the action patterns learned on
Nginx are sufficiently similar for detection on Apache.
Our proposed approach identified 27 different alarms,
which corresponds to an alert reduction rate of 98.3% with
respect to a single execution of the attack on Nginx. After
splitting the stream of alarms in chunks, each attack resulted
in 11 alarm sequences, corresponding to the 11 actions
in the multi-step attack. During clustering, the sequences
corresponding to the “Is” command were merged, resulting
in 9 action patterns. Finally, these short-term action patterns
are combined into long-term attack patterns. Due to time
delays, a single execution of the attack yields three separate
attack patterns: steps 1-4a, step 4b, and steps Sa-5c. Fig. 5
shows steps 1-4a and the composition of the action pattern
of the “echo” command, which consists of 6 alarms. The

Table I
SIMILARITY MATRIX BETWEEN ATTACK STEPS FROM APACHE WEB
SERVER (ROWS) AND LEARNED ACTIONS FROM NGINX WEB SERVER
(COLUMNS). THE HIGHEST SIMILARITY IS MARKED BOLD.

Upl. | Is pwd | cat echo | nc kill cp m
1 086 | 0.04 | 0.0 0.0 029 | 0.13 | 0.0 0.03 | 0.0
2a | 0.02 092 | 0.04 | 0.08 | 0.04 | 0.02 | 0.01 | 0.17 | 0.08
2b | 0.0 0.04 1.0 0.09 | 033 | 0.0 0.0 0.03 | 0.5
2¢ | 0.0 092 | 0.04 | 0.09 | 0.04 | 0.0 0.01 | 0.17 | 0.09
3a | 0.0 092 | 0.04 | 0.09 | 0.04 | 0.0 0.01 | 0.17 | 0.09
3b | 0.0 0.08 0.09 | 1.0 0.09 | 0.0 0.0 0.06 | 0.18
4a | 0.29 | 0.08 033 | 0.09 | 0.83 | 0.13 | 0.0 0.06 | 0.33
4b | 0.13 | 0.04 | 0.0 0.0 0.13 | 1.0 0.0 0.03 | 0.0
S5a | 0.0 0.02 0.0 0.01 | 0.01 | 0.0 0.56 | 0.02 | 0.01
5b | 003 | 022 | 0.03 | 0.07 | 0.08 | 0.03 | 0.01 | 0.92 | 0.07
5c | 0.0 0.08 0.5 0.18 | 0.33 | 0.0 0.0 0.06 | 1.0

numbers depict the ID of the alarm, same IDs mean that the
alerts were allocated to the same alarm during clustering.
In the bottom of the figure, sample alarm descriptions are
provided that include type, affected paths and anomalous
values. Note that we omit further attributes for brevity.

As part of our illustrative scenario, we assume that the
attack patterns have been manually validated by security
analysts and are shared with another organization that runs
Apache web servers. In the context of our approach, sharing
CTI means that the parser tree as well as configurations of
anomaly detectors are provided so that the detection of the
same anomalies on another system is possible. Furthermore,
we share the alarms, action patterns and attack patterns to
enable matching. The other organization then sets up the
detectors and uses the parser tree to detect anomalies as
usual (cf. Fig. 2). During all clustering steps, the algo-
rithm matches the alerts with the shared alarms and further
matches the sequences of alarms with the shared action and
attack patterns. In case that a match yields a similarity above
a predefined threshold, the algorithm allocates the objects to
the respective classes. We used the parameters w, = w, =
0.3, Wep = Wep = 0.1, w, = 0.2,6; = 0.51,0, = 0.65.

In our evaluation, only 16 out of the 1000 anomalies
from the Apache web server were not allocated to any
of the alarm classes from the Nginx web server. These
and other misclassifications are caused by dissimilarities of
values such as directory names different on both servers.
Despite their negative influence, we demonstrate that it is
reasonable to match alarm sequences generated on Apache
with action patterns mined from Nginx by computing their
pairwise similarities. Table I shows the similarities of all
combinations of executed attack steps (rows, cf. Fig. 3)
and known action patterns (columns). Each attack step is
assigned the class of the best matching action pattern, i.e.,
the action pattern achieving the highest similarity (bold).
The table shows that each step of the multi-step attack is
allocated to the correct action pattern, e.g., step 4a executes
an ‘“echo” command (cf. Fig. 3) and is allocated to the
“echo” action pattern with a similarity of 0.83. Note that
2a, 2c, and 3a are all assigned to the action pattern “Is”.

The highest similarities should be considered in relation to
the similarities of the other classes for each particular attack
step, e.g., step S5a only achieves a maximum similarity of
0.56, but is still allocated with a high confidence, due to the
fact that the second highest similarity is only 0.02.

Finally, we derive the long-term attack patterns mined on
the Apache web server. Due to the fact that all attack steps
were correctly assigned to action patterns and their timing
and ordering were not changed, the resulting attack patterns
on Apache match perfectly to the ones from Nginx.

VI. DISCUSSION

The results of our illustrative scenario show that despite
system-dependent variations, our approach is able to extract
actionable CTI that supports the detection of attacks on
other systems. In our demonstration, we did not explore
variations on the steps of the attack chain, because their
effects are trivial. For example, skipping the optional step
2a when executing the attack on the Apache web server
does not change the success of the attack, but results in
an attack pattern that lacks one action in comparison to
the TTPs generated on the Nginx web server, therefore
reducing their similarity. However, due to the fact that our
approach generates attack patterns by computing the LCS of
repeatedly occurring attacks, it is sufficient to observe such a
variation of an attack once to adjust the pattern accordingly.
We argue that sufficient observations of variations will
eventually reduce the generated TTPs to their most essential
steps that are necessary for the attack to be successful.

The generated attack patterns are actionable due to the
fact that they are automatically detectable, and correspond
to complex patterns that are difficult to change, e.g., syscall
sequences generated by particular actions. The main advan-
tage over other approaches, such as malware profilers, is that
attacks are reduced to their most characteristic features, so
that detection is largely independent of variations.

It must be noted that sharing our CTI is not as simple as
sharing traditional IoCs, such as IP addresses. The reason for
this is that the parser tree, information on deployed anomaly
detectors and their configurations, alarm clusters, as well
as action and attack patterns must be shared to enable the
most effective detection. Because log data often contains
sensitive information, organizations may be reluctant when
it comes to sharing alarms that possibly contain contextual
and event execution information [15]. In addition, making
highly specific attack patterns publicly available may facil-
itate reproduction of attacks by adversaries [18], who reuse
or modify the intrusion procedure and target unprotected
systems. We therefore suggest to screen any manually or
automatically produced CTI that leaves an organization.

Many organizations operate great numbers of similar con-
figured machines used for the same tasks. Since failures and
attacks are expected to manifest themselves in a similar way
on these machines, applying our approach for mining CTI

and detecting threats could effectively improve resilience.
In addition, security analysts could carry out attacks or
otherwise dangerous behavior to generate detectable patterns
suitable to be rolled out on many systems.

VII. RELATED WORK

Alert aggregation and the detection of multi-step attacks
are well-researched problems in cyber security. Thereby,
most approaches aggregate, correlate, and connect alerts by
the similarity of certain features. For example, the approach
proposed by Julisch [19] generalizes alerts received from
IDSs by aggregating their attributes using hierarchies. Valdes
and Skinner [20] use features such as IP and port lists,
user and sensor IDs, and time to compute the similarity for
probabilistic alert correlation. Qiao et al. [17] also take IP,
time, and the type of alerts into account for similarity com-
putation and then use LCS to extract the attack patterns. Pei
et al. [21] generate a graph based on the presence of certain
attributes and then perform graph community extraction to
derive attack patterns. Almost all such approaches rely on
the assumptions that attack steps are detectable by traditional
IDSs, i.e., that predefined signatures for detection exist,
and that alerts are available in well-structured formats that
facilitate feature-based similarity computation. In contrast
to these methods, the approach proposed in this paper
focuses on unknown anomalies detected in raw log data and
incorporates every attribute available in the log lines as well
as detector information for similarity computation.

Mapping security events to existing TTPs is able to enrich
human-readable attack descriptions with detectable events.
Scarabeo et al. [22] use methods from text mining to map
IDS alerts to attack descriptions provided by CAPEC [10].
Navarro et al. [12] derive context and patterns from log
events to generate a complex attack model suitable for
matching with TTPs from threat databases.

Other approaches automatically generate CTI from
sources other than log files. Husari et al. [4] use machine
learning to extract threat actions from human-readable CTI
reports. They then map the sequences of actions to known
attack patterns and output them in STIX [9] format. Zhu
and Dumitras [6] propose an algorithm that automatically
analyzes online security articles and generates detectable
patterns that consist of combinations of IoCs. Among the
drawbacks of these methods is that they rely on the availabil-
ity of manually written threat reports, which do not necessar-
ily provide a comprehensive view on the affected systems.
In addition, creating these reports is time-consuming and
thus threat information is not immediately available after
incidents. We argue that log data captures the system in more
detail and enables real-time CTI generation and detection.

VIII. CONCLUSION

In this paper, we introduced an approach for the auto-
matic extraction of actionable threat intelligence from raw

log data. Other than existing methods that process well-
formatted output of IDSs, our approach employs anomaly
detection to enable the disclosure of unknown attacks. We
pursue iterative clustering and enrichment of anomalies with
optional human verification with the purpose of transforming
low-level log events to complex attack patterns.

With this approach, we provide a solution to shortcomings
of state-of-the-art threat intelligence. In particular, existing
IoCs do not offer sufficient protection due to their limited
validity and simple nature that enables evasion. TTPs solve
this problem by providing abstract attack descriptions, but
are only available in human-readable format that prevents
automatic detection. Our research efforts aim at combining
the advantages of IoCs and TTPs by mining detectable
patterns describing complex behavior. We showed in an il-
lustrative scenario that our approach is capable of extracting
an attack pattern corresponding to a multi-step attack that is
suitable to be used for detection on another system.

Our next steps are to test our approach with different
attack scenarios and to improve the robustness of our cluster-
ing and pattern recognition algorithms. For this, we plan to
set up and evaluate our approach in a complex environment,
where extraction and detection is complicated by outliers
and simultaneously occurring attacks.

ACKNOWLEDGMENT

This work was partly funded by the FFG projects INDI-
CAETING (868306) and synERGY (855457), and the EU
H2020 project GUARD (833456).

REFERENCES

[1] W. Tounsi and H. Rais, “A survey on technical threat intelli-
gence in the age of sophisticated cyber attacks,” Computers
& Security, vol. 72, pp. 212 — 233, 2018.

[2] D. Rhoades, “Machine actionable indicators of compromise,”
in Proceedings of the 48th International Carnahan Confer-
ence on Security Technology. 1EEE, 2014, pp. 1-5.

[3] D. Chismon and M. Ruks, “Threat intelligence: Collecting,
analysing, evaluating,” Tech. Rep., 2015, MWR InfoSecurity.

[4] G. Husari, E. Al-Shaer, M. Ahmed, B. Chu, and X. Niu,
“Ttpdrill: Automatic and accurate extraction of threat actions
from unstructured text of cti sources,” in Proceedings of
the 33rd Annual Computer Security Applications Conference.
ACM, 2017, pp. 103-115.

[5] J. Navarro, A. Deruyver, and P. Parrend, “A systematic
survey on multi-step attack detection,” Computers & Security,
vol. 76, pp. 214 — 249, 2018.

[6] Z.Zhu and T. Dumitras, “Chainsmith: Automatically learning
the semantics of malicious campaigns by mining threat intel-
ligence reports,” in Proceedings of the European Symposium
on Security and Privacy. 1EEE, 2018, pp. 458—472.

[7]1 R. McMillan, “Definition: Threat intelligence,” Gartner.com,
2013, accessed: 2019-05-13. [Online]. Available: https:
/Iwww.gartner.com/en/documents/2487216

(8]

[91

(10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

[22]

H. Dalziel, E. Olson, and J. Carnall, “How to define and build
an effective cyber threat intelligence capability.” Syngress
Publishing, 2014.

S. Barnum, “Standardizing cyber threat intelligence informa-
tion with the structured threat information expression (stix),”
Tech. Rep., 2012, Mitre Corporation.

S. Barnum, “Common attack pattern enumeration and classifi-
cation (capec) schema description,” Tech. Rep., 2006, Cigital.

D. Bianco, “The pyramid of pain: Intel-driven detection &
response to increase your adversary’s cost of operations,”
Tech. Rep., 2014, RVASec.

J. Navarro et al., “Huma: A multi-layer framework for threat
analysis in a heterogeneous log environment,” in Proceedings
of the 10th International Symposium on Foundations and
Practice of Security. Springer, 2017, pp. 144-159.

F. Cuppens and A. Miege, “Alert correlation in a cooperative
intrusion detection framework,” in Proceedings of the 23rd
IEEE Symposium on Security and Privacy. IEEE, 2002, pp.
202-215.

V. Mavroeidis and S. Bromander, “Cyber threat intelligence
model: An evaluation of taxonomies, sharing standards, and
ontologies within cyber threat intelligence,” in Proceedings
of the European Intelligence and Security Informatics Con-
ference. 1EEE, 2017, pp. 91-98.

S. E. Dog et al., “Strategic cyber threat intelligence shar-
ing: A case study of ids logs,” in Proceedings of the 25th
International Conference on Computer Communication and

Networks. 1EEE, 2016, pp. 1-6.

M. Wurzenberger, M. Landauer, F. Skopik, and W. Kastner,
“Aecid-pg: A tree-based log parser generator to enable log
analysis,” Proceedings of the 4th International Workshop on
Analytics for Network and Service Management, 2019.

L.-B. Qiao, B.-F. Zhang, Z.-Q. Lai, and J.-S. Su, “Mining
of attack models in ids alerts from network backbone by
a two-stage clustering method,” in Proceedings of the 26th
International Parallel and Distributed Processing Symposium.
IEEE, 2012, pp. 1263-1269.

S. Barnum and A. Sethi, “Attack patterns as a knowledge
resource for building secure software,” in Proceedings of the
OMG Software Assurance Workshop, 2007, Cigital.

K. Julisch, “Clustering intrusion detection alarms to support
root cause analysis,” ACM transactions on information and
system security, vol. 6, no. 4, pp. 443—471, 2003.

A. Valdes and K. Skinner, “Probabilistic alert correlation,”
in Proceedings of the 4th International Workshop on Recent
Advances in Intrusion Detection. Springer, 2001, pp. 54-68.

K. Pei, Z. Gu, B. Saltaformaggio, S. Ma, F. Wang, Z. Zhang,
L. Si, X. Zhang, and D. Xu, “Hercule: Attack story recon-
struction via community discovery on correlated log graph,”
in Proceedings of the 32nd Annual Conference on Computer
Security Applications. ACM, 2016, pp. 583-595.

N. Scarabeo, B. C. Fung, and R. H. Khokhar, “Mining known
attack patterns from security-related events,” PeerJ Computer
Science, vol. 1, p. 21, 2015.

