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Abstract: Organizations recently started to exchange security relevant information on cyber incidents to timely 
mitigate the effects of newly discovered malware and other forms of cyber attacks. Moreover, state actors 
assume their role as information brokers through national cyber security centers and distribute warnings on new 
attack vectors and vital recommendations on how to mitigate them. Although many of these initiatives are 
effective to some degree, they also suffer from considerable limitations. When going beyond pure technical 
indicators, extensive human involvement is required to manually review, vet, enrich, analyze and distribute 
security information until relevant information reaches a decision maker. Recent research therefore proposes 
the automatic collection, analysis and preparation of security data to effectively overcome limiting scalability 
factors. While this seems to work at an organizational level, the elevation of these approaches to a cross-
organizational and even national level is not straight forward. In this paper we investigate where and why the 
human factor seems irreplaceable. We shed light on the limitations of autonomous cyber security sensor 
networks at the national level and outline important research areas that need further attention in order to 
address the remaining issues. 
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1. Introduction 

Recent legal and regulatory advancements, such as the EU NIS directive (European Commission, 2016) and the 
US CISA (US Congress, 2015) support the development towards a more connected cyber security community, 
especially a more open culture of exchanging information on security incidents. These initiatives foresee that 
organizations, especially critical infrastructure providers, report incidents and critical situations to the 
authorities, essentially cyber security centers or national CERTs/CSIRTs, which take these reports to create 
common cyber operational pictures (CCOPs) (Pahi et al., 2017). These CCOPs are the foundational basis to 
establish cyber situational awareness (Franke and Brynielsson, 2014) and aid decision making at the different 
levels of organizations and nation states. However, the whole process of data collection and approval on an 
organization’s side, as well as the data review, interpretation, aggregation and analysis on the national side is 
error-prone, involves large amounts of human intelligence, introduces significant lags and therefore does not 
scale. Thus, recent research has proposed numerous models for cyber security sensor networks to overcome 
these issues caused by manual reporting (Swart et al., 2016) (Coldebella and White, 2010). 
 
The vision of autonomously reporting sensors is that the authorities can discover within minutes how widely 
distributed a certain malware is, how vulnerable organizations or industry sectors are in general, and thus, derive 
the general threat level of a whole society within a nation state at any point in time. That is the theory. 
Unfortunately, there are numerous limiting factors to this vision. Set aside all the issues regarding data privacy, 
legal barriers and complex governance aspects, the single factor that seems to render this vision unachievable 
is still the human in the loop. In order to decrease the dependency on human skills in the whole national security 
eco-system, it is of paramount importance to understand where and why these human factors are strictly 
required. The grand vision of many authorities is that a “black box”, deployed at the perimeter of each and every 
organization’s network collects traffic data and reports suspicious behavior and sightings of malicious activities 
to a central entity. What sounds like a rather simple autonomously working system, means however a very 
complex, human-driven effort towards collaborative cyber security. 
 
This paper deals in with the human factor of  cyber security sensor networks. The actual contributions are: 

• We outline the foundational concepts of a cyber security sensor network to better understand where 
the human is indispensable in the whole process. 

• We define a process model to design and run a cyber security sensor network, which was derived 
together with national authorities in course of a research project.  
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• We critically review this model with respect to the degree of achievable automation in each step and 
discover clear limitations due to required human involvement. We also highlight future research 
directions to relax the situation. 

2. Related Work 

Indicators of compromise are a means to validate the exploitation of a vulnerability (Rid and Buchanan, 2015). 
They are used to look for traces that a system has been hacked, modified or exploited in some malicious way. 
Therefore, vendors of malware scanning solutions distribute IoCs to their deployments so that customers can 
automatically verify infections. Eventually, this makes malware scanners the simplest form of sensor nodes 
which are supplied with new signatures on a regular basis. Signatures to identify malicious domains and IP 
addresses may also be developed by analyzing DNS traffic (Passive DNS). These types of sensors are de-facto 
state of the art in more mature organizations and can be connected to security information and event 
management (SIEM) solutions (Miller et al., 2010) to evaluate their results and get an overview of the current 
threat situation. However, this knowledge resides mostly within organizations only and is just useful to them 
since only they know their specific processes and are capable of interpreting the results correctly. 
 
National authorities may receive manual reports from organizations which may be based on automatically 
collected data. This reporting should tremendously increase the awareness of national cyber security centers 
and CERTs/CSIRTs as intended by the EU’s NIS directive (European Commission, 2016), US CISA (US Congress, 
2015). Additionally, information sharing across organizations (Skopik et al., 2016) takes mostly place within 
industry sectors, which run similar services deployed on similar technologies, and thus, fighting with the same 
security issues. However, this information sharing processes are mostly initiated on demand and performed 
manually instead of automatically; e.g., manual exchange of indicators in MISP (Wagner et al., 2016). What is 
missing, is a means for a near real-time evaluation of the current situation, e.g., in case of spreading malware or 
serious and widely distributed vulnerabilities. Getting to know, who is affected and how serious the problem is, 
requires tremendous human effort. So, an automatic evaluation and forwarding would be desirable for the 
national authorities and considerably relax the situation in the beginning of a new attack wave. Cyber security 
sensor networks, as proposed by several national cyber security strategies (Luiijf et al., 2013) could be of great 
help, and some real-world examples are already deployed, e.g., in France, Finland (Rantapelkonen et al., 2013), 
and Switzerland (Cavelty, 2014) for exactly that purpose. 
 
Eventually, collecting information about cyber attacks, incidents and threats in a timely manner is essential to 
gather cyber situational awareness (Franke and Brynielsson, 2014), and a prerequisite of justified decision 
making (Stotz and Sudit, 2007). 

3. The Foundations of Cyber Security Sensor Networks 

3.1 Motivation for Sensor Networks 

Especially, at the beginning of a nation-wide cyber security incident, such as spreading malware in critical 
infrastructures (Chen and Bridges, 2017) or the recent discovery of a wide-spread vulnerability (Durumeric et 
al., 2014), information of national CERTs or National Cyber Security Centers about the situation of privately-
owned organizations are scarce at best. Most urgent questions in such situations for which timely answers may 
be essential for the survival of a nation state’s industry, include: 

• Who is affected? 

• Who needs help? 
 
Unfortunately, affected organizations tend to report quite late or not at all (Choo, 2011). However, the 
obligations of the EU’s NIS directive, as well as the US CISA might ease the situation here, depending on how 
strict the thresholds for reporting obligations are set. Moreover, there are many exemptions for numerous kinds 
of organizations which do not need to report incidents with significant impact. Even if an organization reports 
cyber security issues to the authorities, this information is just useful if the authorities get to know the potential 
impact, and an estimate whether the reporting organization can deal with the issues alone or needs external 
help. For instance, in the WannaCry case early 2017 (Chen and Bridges, 2017), many organizations were down 
but busy with restoring their data from recent backups, while others were still debating whether this small 
payment to an anonymous bitcoin account would unlock their data. The latter didn’t have disaster recovery 



3 
 

plans at this time. So, generally speaking, it is unclear how much impact an attack wave has on a larger scale, 
i.e., across different organizations, and how widespread a certain malware (or exploitable vulnerability) is. 
 
Up to now, in such cases, national CERTs and CSCs have simply asked organizations to periodically send reports 
stating their operational status to estalbish a clear picture. This situation is unsatisfactory and demands a more 
automated approach.  

3.2 Illustrative Application of Cyber Security Sensors 

The demand for (semi-)automatically collecting cyber security relevant information (e.g., through sensors) is not 
exactly new and has been enforced by secret services since years (Coldebella and White, 2010). While with a 
high degree of automation for data collection, aggregation, analysis and interpretation a high scalability factor 
seems achievable, the setup and application of cyber security sensors across organizations is highly non-trivial. 
A comparatively primitive, but yet non-trivial, application case of cyber security sensors is the registration of IoC 
sightings. An IoC (Rid and Buchanan, 2015) is a unique data particle that verifies the presence of a malware or 
the exploitation of a service. This is for instance the presence of a certain file (name, hashsum etc.), a specific 
process, log line in DNS records, specific network events etc. Numerous initiatives to detect the presence of 
these IoCs automatically on a national level have been undertaken. They use distributed sensors, deployed on 
the Internet as well as within organizations, to constitute a sensor network. For the WannaCry ransomware 
campaign, the basic questions that required timely answers through consulting such a sensor network at an early 
stage were (answers in parentheses): 

• What needs to be detected? (certain patterns in SMB traffic; specific strings in memory) 

• Where can be detected? (between network segments (firewalls); at all potentially vulnerable hosts) 

• How can be detected and captured? (analysis of netflows, deep packet inspection, host scans)  

• How (quickly) does the result need to be forwarded? (encrypted and anonymized on detection) 

• Why should it be detected and captured? (estimation of how widespread WannaCry is) 

3.3 Design Considerations for Cyber Security Sensor Networks 

With respect to the questions raised above, multiple vital aspects need to be considered during the design phase 
of a sensor network. WHAT needs to be detected, might not be straight forward to answer; either simple IoCs 
are known and can be distributed to sensors (e.g., via detection rules that are pushed to sensor nodes), or 
complex contextual data needs to be captured for further analysis (e.g., type and degree of dependency of 
critical business services on underlying technologies). The latter is specifically challenging due to the diversity 
and large volumes of data that needs handling. WHERE data can be detected does not only depend on the type 
of data, but also on the type and structure of the monitored infrastructure. Newer concepts, such as “Bring-
Your-Own-Device” and end-to-end encryption has caused the network perimeter to diminish. Additionally, 
software-defined networks (SDN) and virtualization techniques rather require host-based detection, which is 
however much trickier to implement and to enforce. This last point is closely connected to the question HOW 
data is being detected and captured. Especially host-based detection raises concerns with respect to scalability, 
performance, data privacy, and accountability in case something goes wrong – and of course: security! Once 
data is being captured – on the host or on the network – HOW data is being securely forwarded is similarly 
important and includes aspects of encryption, transport priorities, aggregation and buffering mechanisms. 
Eventually, the last question is WHY data should be detected and captured. If there is no clear contribution of 
sensor readings to a higher level analysis for both the nation state and the privately-owned companies that 
report, then the acceptance of this technology within organizations will be limited. 

4. From Simple Data Acquisition to Cyber Situational Awareness 

4.1 On common cyber operational pictures (CCOPs)  

The transformation of vital information into a common (cyber) operational picture (CCOP) is key to justified 
decision making. However, an important lesson to learn is that despite the “common” in the name, there is no 
“one fits all” solution in the cyber domain. A CCOP is always layer- and application-specific. Stakeholders on 
different layers need to be supplied with information that is specific to their tasks, functions and decisions to 
make. For instance, a server administrator needs different information and makes different decisions than a 
chief information security officer above him. The information required by business management on the strategic 
layer is different from the information required by decision makers in political functions. Moreover, independent 
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from the actual layers and roles, different applications of CCOPs require different data. For example, incident 
response focuses on other aspects than proactive risk assessments. 

4.2 The dilemma of layer-adjusted CCOPs 

Based on the explanation above, the actual dilemma is to keep a balance, on the one side, to supply stakeholders 
with information shaped to their needs, and on the other side not influence their decision making by filtering 
information which is below a preset relevancy threshold. The same information may trigger different actions 
depending on how it is visualized in dashboards. Colors, font sizes, and orders of table entries have great 
influence. The application of filters is even more critical.  

4.3 A rigorous model to establish cyber security sensor networks 

To tackle the dilemma of creating layer-specific CCOPs, we came up with a rigorous design process that help us 
to design application-specific cyber security sensor networks, which go far beyond simple IoC validation and thus 
incorporates both, carefully selected core data and contextual data. In this model, we run through five 
consecutive steps, each dealing with a specific question, depicted in Figure 1. 
 

 
Figure 1: CCOP Design Process and Guiding Questions 
 
Finding answers to the questions in these five steps helps us to set the corner stones of an application-specific 
sensor network. However, many of these answers are quite tricky to answer and conflict with the need for a 
high degree of automation. Eventually, deploying, running and maintaining a cyber security sensor network 
following this model requires considerable human involvement, which is the root cause of serious limitations 
for their fast and cost-efficient adoption as outlined in the next section. 

5. Major Limitations and Critical Factors 

In this section we are going to dissect the introduced top-down model of Section 4 and investigate the multiple 
factors that need to be considered during the design of a cyber security sensor network. Automation in the 
various steps is the key to a fast, scalable and efficient sensor network. Therefore, we specifically focus on steps 
in the model that strictly require human interaction. 

5.1 Step 1: Which decisions need to be made? 

Eventually, sensor data is retrieved, analyzed, interpreted and transformed into common cyber operational 
pictures (CCOPs) to aid some sort of decision making. The decisions in national CERTs and security centers might 
be manifold at an operational and strategic level. We distinguish decisions depending on their time horizon 
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(Table 1 based on (Pahi and Skopik, 2016)). All these decisions require the human in the loop due to usually 
complex cyber security situations at the national level – either to make or to approve the decision. 
 
Table 1: Decisions at the national level supported by sensor networks 

Short-term (hours) Send out warnings to potentially affected organizations 
Provide immediate help (incident response, disaster recovery) 
Provide recommendations 
Enforce information sharing within a sector 

Medium-term (days) Create task force to overcome a crisis 
Coordinate actions together with vendors or service providers 
Assist in disaster recovery across organizations 
Update best practice guidelines and distribute updates 
Start prosecution 

Long-term (months) Financial support for education of experts 
Provide trainings 
Coordinate periodic external audits 
Adapt laws and regulations (e.g., thresholds in obligations to report) 

 

5.2 Step 2: Which information need to be displayed? 

The information to be visualized in CCOPs is always application-specific and stakeholder-specific. In other words, 
decision makers need to be supplied with information for a particular situation. The application cases, the 
decision in context of these application cases and the type of relevant information need to be defined in 
advance, otherwise decision makers run the risk of getting overloaded with tons of unspecific data. That is a 
major difference to the application of COPs in the physical world.  
 
For example, let us consider the goal of a CCOP is to support justified risk assessment of cyber crime using DDoS 
(Radunovic, 2013). First information of interest is about the current threat level. For instance, how much does 
renting a DDoS attack with, say, 5 GBit/s for a duration of 1 week, in the Darknet cost? And regarding the 
motivation: Is it in someone’s interest to harm an organization, industrial sector or nation state? The latter is 
often connected to evaluating the current political situation and attitude of activists and hacktivists. Besides the 
current threat situation, historic data may be of great help to estimate trends. Examples are questions on how 
many organizations where victims of such an attack in the last year; or how well organizations of a certain sector 
are prepared, e.g., with respect to their business continuity planning. Also, which mitigation controls are already 
in place, such as backup sites, or traffic scrubbing contracts, is essential to draw the right picture. And in case 
despite all preparation an attack happens, it is important to identify the properties of attacks early, e.g., coming 
from a known or unknown bot net, the modus operandi of the attacker, the type and criticality of affected 
systems, and the ransom demanded. Looking at this single case of CyberCrime via DDoS (which is not even 
exhaustively presented here), it becomes obvious that collecting network data alone will not help us much to 
understand cyber attacks, but carefully collecting contextual data to aid the interpretation of collected network 
data and eventually to draw the right conclusions is the key to an effective cyber security sensor network. 
Unfortunately, coming up with these application cases requires a sharp human mind and cannot be done 
automatically. 

5.3 Step 3: Which data need to be collected? 

Now, after we know what information needs to be visualized for applicable CCOPs, we need to decide what data 
is required to derive this information. Here, we distinguish between two essential classes: (i) core data and (ii) 
contextual data (Pahi et al., 2017). Many works in the threat intelligence domain focus only on core data, e.g. 
STIX (Barnum, 2012), which is comparatively easy to model, gather and process automatically. The core data 
includes indicators (IoCs), observables (aka sightings of these IoCs in real infrastructures), information about 
previous incidents and targets, applied tactics, techniques and procedures (TTPs), and so on. However, the 
interpretation of these core data requires contextual data for decision making. For instance, just because some 
IoC was spotted, it does not mean its occurrence is critical. Without knowledge of the layout of the target 
network, criticality of hosted services and supported processes, as well as capabilities of the people handling a 
problem, a reliable decision on the next steps is hardly possible. Thus, to interpret core data, we require 
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contextual data, including information on organizations, their services to the public and the dependency of their 
business processes to the underlying technology. Furthermore, essential industry know-how and lessons learned 
from previous incidents increase the quality of decision making. A rule of thumb is that core data can be gathered 
as is and thus exploited automatically, while contextual data is usually too diverse, unstructured, noisy and often 
not explicitly documented in a machine-readable format so that it requires human processing. More insights on 
security-related data and its classification is discussed in Pahi et al. (2017). 

5.4 Step 4: How can potential data sources be rated? 

A key question always is where to gather the data from. Often there are multiple sources, under control of 
different parties, which however emit the same or similar data. In that cases we need a sound approach to 
decide which source should be consulted. There are numerous metrics to consider, based on the specific 
application case of the CCOP, including timeliness, relevance, control, completeness, trust, availability, 
sensitivity, and accuracy. For instance, one source might be manually vetted, and cross-checked and thus 
delivers high quality trust-worthy results, while another one misses these features but delivers more up-to-date 
information. Other questions might be centered on who is in control of a source, can it be trusted or easily be 
manipulated. Which sources to pick is especially tricky in case of conflicting data from different sources. Here, a 
human in the loop who manually makes a justified decision on which source to pick is required. Since sources 
are mostly volatile in nature, verifying the quality of sources is a re-occurring task. 

5.5 Step 5: Which data can be exploited using sensors? 

The last step is the one with the highest potential for automation. Once it was determined what needs to be 
collected and for what reasons, the pure data acquisition takes place. The low-hanging fruits are all technical 
information about an organization that can be gathered from the outside, such as (i) the IP addresses an 
organization uses, which is highly relevant for botnet detection; (ii) the core services an organization offers to 
identify dependencies to other organizations; and (iii) public keys and certificates, such as S/MIME, SSL/TLS used 
for external communication. It becomes trickier when we look into an organization and collect information from 
within – either captured from the network or directly on hosts. These data include, but is not limited to, (i) assets 
and configurations, e.g., collected via SNMP to match against known vulnerabilities and weaknesses); (ii) data 
about system usage and behavior, e.g., usual bandwidth consumption profiles, degree of statistical anomalies 
in data flows; (iii) attacked services, exploited vulnerabilities and used attack vectors (if known at all); (iv) the 
results of periodically performed malware scans and internal audits (which however require contextual data for 
interpretation); and (iv) simple IoC sightings within the network, e.g. suspicious files, IP/mail addresses, 
scheduled reboots etc. incl. sandbox analysis results. 
 
However, particularly interesting is the information which can be inferred from this simple data. Just to provide 
some examples: One could derive an organization’s “patch mentality” by just measuring the time span between 
the release of a new patch and its deployment at the organization’s assets. Another example is mining of 
operational best practices, e.g., how frequently passwords are changed, or what types of roles to restrict system 
access is applied. One could even determine if there were successful malware attacks, although a patch was 
available to fix the exploited vulnerability. Anyway, the key question is which – if any – of these details is useful 
to aid the decision making on a national level as outlined in Step 1 of this process. 

6. Conclusion and Future Work 

There is an infinite amount of data that can be gathered from hosts and networks, but the essential question is 
which of this data is relevant to support decision making processes at the national level. An accurate overview 
of the status of critical infrastructures helps to determine and coordinate mitigation actions across organizations, 
while the actual mitigation actions are mostly carried out within the organizations. For instance, the distribution 
of detailed recommendations to handle a recently discovered vulnerability or the distribution of an unofficial 
emergency patch are good examples here. However, to determine which information is of importance to 
decision makers at diverse layers and in various roles, complex human knowledge and skills are required for 
designing, deploying, operating and maintaining sensor networks. It is obvious that just collecting huge amounts 
of data on a broad scale does not aid decision making and is thus meaningless without a rigorous justification 
for doing so. The application of sensors also requires a concept to gather the context in which sensor values are 
collected. If a sensor reports suspicious traffic or the sighting of an IoC, the analysts at the national layer also 
need background information of the affected organization, its infrastructure, assets and services.  
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As more human skills are required, the less scalable the whole system becomes. It is therefore of paramount 
importance for future research to determine ways to relieve the human from reoccurring tasks and allow him 
to focus scarce and valuable resources on other tasks. Future research therefore needs to deal with: 

• Data retrieval: Automatizing data retrieval from sources that emit data in a wide range of different 
formats is a key to increase the scalability. Besides getting along with numerous interface styles and 
protocols, the automatic generation of parsers to transform data in any format (STIX, OpenIoC, logs 
etc.) into one consistent format for later reasoning is particularly of interest here. 

• Natural language processing: Besides the challenges of harmonizing different syntaxes, the much 
bigger challenge is to automatically process and understand free text messages, e.g., incident reports, 
threat assessment reports, whitepapers, blog entries, Internet forums etc. Many valuable sources are 
available only in an unstructured text format, which is hard to digest automatically. However, 
accounting for high-level TTPs described in these sources is much more effective than an analysis based 
on technical indicators only. Either a machine-readable representation of these high-level TTPs or some 
smart algorithms to process this natural language texts directly are desirable. 

• Autonomous security database management and lookup: Maintaining, querying and even cross-
connecting (public) databases for targeted lookups when investigating incidents or assessing threat 
levels, e.g., when a suspicious IP address, url name or file is found in a company network, is a key 
requirement for automated threat assessment. Particular examples for such lookup databases are 
VirusTotal, ThreatMiner, ThreatCrowd and DNSDumpster. 

• Information fusion and semantic reasoning: Cross-connecting aforementioned sources, such as 
malware domains with file hashes, or CVE entries with information on exploits, is key to avoid tedious 
manual search activities and free the analyst’s time for actual analysis instead of data collection 
activities. This will however require at least some semantic understanding of the information delivered 
by the sources.  

• Decision making support systems: Once the analysis is largely performed automatically, a human 
decision maker would only need to review the results and make a decision appropriate for a given 
situation. Re-occurring decisions, e.g., the triage in incident response, may, however, be automatized 
by using self-learning systems which monitor human decisions and comprehend which factors lead to 
certain decisions.  

 
Eventually, nation states need to ensure transparency regarding the application of cyber security sensor 
networks. If organizations do not know what the authorities are looking for, if there is no clear benefit for the 
monitored organizations and no reasons for collecting specific types of data, the acceptance of this technology 
will be extremely limited and thus its effectiveness suffer. In the best case, organizations and the nation state 
build a public-private-partnership were both sides benefit equally. 
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