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ABSTRACT
Intrusion detection systems are essential for network security. To
verify their detection capabilities and facilitate comparison, bench-
mark log datasets are used to measure evaluation metrics such as
accuracy and false alarm rates. Thereby, it is necessary that these
datasets come with a correct ground truth that differentiates nor-
mal and attacker behavior. While it is relatively straightforward
to generate labels for network-based datasets by selecting events
according to IP addresses of attacker hosts, system logs do not nec-
essarily involve such identifiers and are possibly only recognizable
as malicious by their combined occurrences. Even more problems
emerge when log data is collected in model-driven testbeds, i.e.,
automatically generated networks that simulate differently parame-
terized attack scenarios in diverse infrastructures. In these testbeds,
parameters such as IP addresses are subject to change and thus can-
not simply be used for matching. We thus propose a framework that
integrates template-based labeling rules for model-driven testbeds.
In this paper we describe the syntax for rule templates with dif-
ferent query types specifically designed to match sequential or
interrelated system log events. An evaluation of our open-source
implementation shows that only 27 rules are necessary to assign
15 labels to 8 system log files containing attack manifestations.

CCS CONCEPTS
• Information systems → Information retrieval query pro-
cessing; • Security and privacy→ Intrusion detection systems;
Systems security.
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1 INTRODUCTION
Cyber attacks pose threats to computer systems at any scale. To
counteract the continuously increasing frequencies and sophisti-
cation of such attacks, security experts are perpetually improving
Intrusion Detection Systems (IDS), which autonomously monitor
system behavior for suspicious activities and report alerts in case
that manual intervention is required. Thereby, it is possible to dif-
ferentiate host-based IDSs (HIDS) that analyze system logs and
network-based IDSs (NIDS) that monitor network packets, as well
as signature-based IDSs that detect predefined attack indicators
and anomaly-based IDSs that rely on self-learning [14].

Independent of their type, it is common to compute detection
accuracies and false alarm rates of IDSs on benchmark datasets as
part of their evaluation. This is essential to verify the capabilities of
IDSs, quantitatively compare performances of different approaches,
and develop new detection techniques. A crucial aspect is thereby
the availability of ground truths for benchmark datasets that allow
to differentiate benign from attacker behavior and thus classify
detection results [10]. Only when this ground truth is created in a
transparent and documented process, evaluation results are reliable
and representative. While it is relatively easy to check whether
reported alerts are within start and stop times of launched attacks,
this strategy is insufficient to appropriately label long-term attacks
and does not address the issue that benign logs occur simultane-
ous to attacks. Therefore, labels should be assigned to single log
instances rather than chunks of logs from certain time intervals.

In general, the process of labeling log data makes use of similar
techniques as signature-based IDSs: Log events are scanned for par-
ticular keywords, e.g., IP addresses of attacker hosts, and labels are
assigned to matching logs to categorize them as malicious [2]. This
is intuitively reasonable for simple scenarios, for example, where
all activities originating from a dedicated attacker machine are
known to be malicious. In testbeds where analysts have full control
and information about the simulated attackers, labeling is trivial
for such cases [21]. However, more complex and realistic testbeds
involve attack manifestations that are interleaved with traces of
normal system behavior, which makes it difficult to discern these
two classes. In particular, labeling by simple IP-based matching
is impossible when normal and malicious activities are executed
simultaneously on the same host, which necessarily occurs when
attackers manage to compromise and misuse actively used systems.
Even worse, system logs that are necessary to evaluate HIDSs rarely
contain network information and do not even need to involve any
expressive descriptors for keyword matching; in fact, manifesta-
tions of attacks are possibly identical to normal events and only
their combined occurrences in a specific execution context allow to
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determine their root cause. In addition, system logs are usually un-
structured and generated in heterogeneous formats so that labeling
rules cannot simply be applied on all log files [27]. Unfortunately,
common ways of data labeling based on keyword matching are
thus unable to adequately label logs for HIDS evaluation.

In recent scientific works, log datasets were generated with
model-driven testbeds [7, 15]. Such testbeds model the network
infrastructure, simulated user behavior, and attack scenarios as
abstract templates that leave out specific parameters, e.g., IP ad-
dresses or user names. Only when testbeds are instantiated from
the models, these variables are dynamically selected and thus gen-
erate unique testbed configurations. Model-driven testbeds have
several benefits, including low manual effort for deployment, high
reusability, and the possibility to generate many testbeds with vari-
ations that represent large varieties of IT environments and thus
enable robust evaluations [19]. However, these properties also im-
ply that labeling rules based on hard-coded values cannot simply be
reused across testbeds, since these values are purposefully subject
to change. Therefore, it is necessary to repeatedly adapt labeling
rules, creating a bottleneck for model-based testbed generation.

With the Kyoushi framework we aim to resolve aforementioned
problems by integrating labeling rule design into a model-driven
testbed generation process. For this, our framework utilizes abstract
labeling rule templates that are completed with automatically ex-
tracted testbed parameters. In addition, we propose four rule types
that allow to label system log datasets for HIDS evaluation. We
summarize our contributions as follows:

• A framework for model-driven labeling of system log data1.
• A publicly available labeled dataset for HIDSs evaluation2.
• An evaluation of the generated dataset labels.

The remainder of this paper is structured as follows. Section 2
reviews labeling strategies of existing datasets. Section 3 explains
relevant concepts of the Kyoushi framework. Section 4 describes
requirements and technical details of our labeling rule templates.
We present an illustrative scenario and evaluation thereof in Sect.
5 and discuss the results in Sect. 6. Section 7 concludes the paper.

2 RELATEDWORK
In the last years, many scientific works have proposed techniques
for log- or network-based intrusion detection [14]. In contrast, only
few benchmark datasets have been published for evaluating such
detectors, and the lack of representative data is an often stated prob-
lem in scientific literature [5, 12, 15, 19, 21]. The issue of labeling
datasets is often neglected, even though a reliable ground truth
is essential to calculate evaluation metrics [10, 22]. We therefore
review existing datasets and focus on their labeling strategies.

CIDDS [21] is a labeled netflow dataset for NIDS evaluation
generated by user simulations on a virtualized testbed. As stated by
the authors, labeling network traffic in testbeds is simple, because
sources, destinations, and timestamps of attack-related flows are
known. However, since their testbed is accessible over the Internet,
external and possibly malicious activities could occur at any time.
The authors therefore label flows that cannot be classified otherwise
as unknown or suspicious depending on the targeted ports.

1Accessible at https://github.com/ait-aecid/kyoushi-dataset
2Accessible at https://zenodo.org/record/5779411

Similarly, Sharafaldin et al. [23] generate a ground truth for the
CIC-IDS dataset by labeling flows where IP addresses, ports, and
protocols match their attacker host. They assign labels for specific
attacks by matching flow timestamps with their attack schedule.
Buchanan et al. [3] apply a similar scheme and state that they are
able to label 99.9% of all events. The ISCX dataset [25] is labeled by
utilizing network resource information as well as information gath-
ered from the attack profiles. The flow-based dataset CTU-13 [9] is
also labeled by matching IP addresses of the involved components.
The authors differentiate between normal traffic originating from
known hosts, botnet traffic from or to infected machines, and all
other background traffic. The authors of the UGR’16 [17] dataset
point out that such a strategy is only feasible when normal behavior
generation is part of the simulation. They use a combination of
signature-based labeling and anomaly-based labeling. The prob-
lem with such anomaly-based strategies is that labeling accuracy
depends on the detectors and is thus prone to errors.

Other than NIDS datasets where labeling based on IP addresses
is simple, HIDS datasets require alternative strategies. For example,
ADFA-LD [5] is a dataset for HIDS evaluation that contains system
call traces, i.e., sequences of low-level system operations handled
by the kernel. Since each system call is executed in context of
a specific process, the authors were able to differentiate normal
from malicious traces of purposefully launched attacks for labeling.
While the ADFA-LD is limited to system call numbers, the LID-DS
[11] enables more realistic evaluations by involving additional trace
information such as process names, arguments, and return values.
The authors differentiate normal and attack behavior, where all
traces generated after the starting times of attacks are labeled as
such. The AWSCTD [4] also collects system calls with parameters
and labels individual traces.

Labeling other log types that do not involve process information
is even more difficult. For example, Skopik et al. [26] collect appli-
cation logs from databases and web servers. They record start and
stop times of attacks to label logs, but are unable to differentiate
benign frommalicious log lines in this interval. In addition to such a
time-based labeling technique, the AIT-LDSv1.1 [15] relies on man-
ually crafted attack log dictionaries and similarity metrics to label
individual lines with sufficient similarity. The disadvantages of this
method include high manual effort and the chance of incorrectly
assigned labels due to inappropriate similarity thresholds.

He et al. [12] provide a collection of several system log datasets,
of which some are labeled by handcrafted rules that are known to
match anomalous events. However, labeled logs mostly relate to
errors or misconfigurations rather than attacks, limiting their rele-
vance for IDS evaluation. In their study on system logs, Oliner et al.
[20] explain that they consulted system administrators to label logs
related to system issues through pattern matching. While labeling
rules that are an integral part of our proposed framework also rely
on domain knowledge about the attack, they are not specific to
a particular system or attack execution by leveraging templates.
As such, they have the advantage of being reusable across many
instances where logs should be labeled.

Huang et al. [13] use a neural network to label a large system
log dataset based on a smaller one. Of course, this still leaves the
problem of manually labeling a representative amount of events
in an initial dataset. As such, this method is more appropriate
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Figure 1: Labeling concept for model-driven testbeds.

for events describing erroneous system states rather than attack
scenarios. The approach proposed by Makiou et al. [18] also relies
on an initial labeled training dataset and uses signature-based and
anomaly-based detectors that run in parallel to assign labels to
a larger dataset. This assumes that public signatures as well as
detector configurations are suitable to detect attack manifestations
with high accuracy, which may be difficult to realize in practice.
Rather than labeling a log data sample, our approach pursues the
generation of generic rules that assign labels to the same attack
type independent of its execution context or targeted system.

Similar to our approach, Sigma3 describes log events with struc-
tured detection rules. The format supports regular expressions,
allows to link queries with logical operators, includes time-based
filters, and allows to automatically modify values, e.g., apply base64
decoding prior to matching. However, to our knowledge there is no
feature that allows to specify sequences of events or nested queries,
which is necessary to label complex attack manifestations and thus
realized in the Kyoushi framework.

3 CONCEPT
As outlined in the previous section, testbeds are commonly used
for the generation of log data suitable for evaluating HIDSs. While
most of these testbeds are relatively static, the Kyoushi framework
employs a model-driven methodology for testbed instantiation. Our
framework is named Kyoushi after the Japanese term for teacher,
which also refers to training datasets. In this section we first give an
overview of model-driven testbed generation and then describe the
integration of our proposed log data labeling procedure into such
an approach. Figure 1 shows an overview of the layers involved
in the concept: layers (L4) model and (L3) testbed are known from
existing works [7, 15] and layers (L2) collection and (L1) labeling are
the main contributions of this paper. In the following, we describe
each layer in detail.

3.1 Model-driven Testbed Generation
The purpose of introducing concepts from model-driven engineer-
ing in testbed generation is to ease and automate deployment of
simulations. This is especially useful when attack executions are
repeated multiple times and with changes in configurations, which
3https://github.com/SigmaHQ/sigma

is essential to adequately depict the diversity of networks occurring
in real-world scenarios, increase robustness of evaluation results by
obtaining more distinct datasets, and enable evaluation of alert ag-
gregation approaches [15, 19]. The key idea is to design components
of the testbed as abstractions of the actual technical realizations,
i.e., setup routines of components are templates that leave several
pre-selected parameters as variables, including IP addresses, user
names, behavior profiles, network size, etc. These templates are
usually referred to as testbed-independent models (TIM) [7, 15].

The model layer (L4) deals with these templates and differenti-
ates between models for infrastructure, user behavior, and attacks.
Infrastructure models include templates for setup and provisioning
scripts for all involved components. Normal user behavior is mod-
eled through state machines, where states act as decision points
that specify the order and frequencies of actions carried out when
moving between states. Similarly, attacker models also involve state
machines and scripted commands, but additionally contain tem-
plates for labeling rules that describe attack artifacts in log data
in an abstract way, i.e., without specifying parameter values that
are unknown at the time of modeling since they are only selected
during instantiation of the testbed.

The testbed layer (L3) holds all testbed-specific models (TSM)
generated by instantiating TIMs. For this, a transformation engine
selects parameter values by predefined functions, e.g., randomly
selects IP addresses from pools or user names from databases. The
automatically generated TSMs are executable scripts for setting up
and running specific testbed instances without manual interference.

3.2 Model-driven Log Data Labeling
Once the simulation running on the rolled out testbed is completed,
the collection layer (L2) handles the extraction of relevant infor-
mation from the components. Foremost, this concerns the log data
to be labeled, which is collected from machines that are typically
monitored by IDSs, e.g., web servers and firewalls. In addition, we
collect logs relevant for labeling from all other machines in the
testbed. Thereby, logs from the attacker machine that outline the
timeline of attack executions are likely the most important source
of information; however, also logs from hosts running simulations
of normal user behavior can be used to verify attack labels or assign
labels to benign activities. Moreover, we gather system information
that we refer to as facts from all components. Facts are the main
source for filling out labeling rule templates and include artifacts
such as IP addresses, domain names, user names, OS versions, etc
[8]. Finally, we also extract configuration files of installed services
and logging frameworks. All gathered data is then transmitted to a
central storage system where labeling takes place.

The labeling layer (L1) is the most crucial part for generating
ground truth labels and thus the main focus of this paper. The label-
ing procedure consists of four steps. First, a pre-processor prepares
the logs for further analysis. In particular, this includes unzipping
log files that are compressed during rotation and converting logs
stored as binary or other formats into raw text files. Second, a parser
transforms the system log data, which is usually only available in
unstructured form, into a semi-structured format so that all tokens
can be referenced individually. These parsed log events are then
loaded into a database that supports storing and searching such
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semi-structured data. Third, a post-processor trims the logs to fit
the desired simulation time interval and prepares all rules by in-
serting facts extracted by the collection layer into rule templates
designed as part of the attacker model. Fourth, the retrieval step
iterates over all rendered labeling rules and executes queries on the
database storing the parsed log data so that all matching events are
assigned one or more labels corresponding to the respective rule.
The following section provides more details on these labeling rule
templates, in particular, an overview of different query types.

4 KYOUSHI FRAMEWORK
The previous section outlines the overall concept of the model-
driven Kyoushi framework and showed the integration of our log
data labeling procedure in an automatic testbed generation ap-
proach. In this section we first discuss the requirements on such a
labeling procedure and then go into more detail on the design of
labeling rules and realization of our approach.

4.1 Requirements
For unbiased and representative evaluation of IDSs it is essential
that the used monitoring data fulfills certain requirements [22].
Accordingly, most works mentioned in Sect. 2 discuss requirements
on the infrastructure where data is collected [15] as well as the log
data itself [17, 21]. However, existing works rarely put any special
requirements on the data labeling procedure. We therefore collected
relevant insights from existing approaches and aggregated them in
the following list of requirements on a log data labeling procedure.

Correctness. Labels should be assigned to log events that are
consequences of attacker behavior, while all other events originat-
ing from normal user or system activity should be recognizable as
benign. Log data labeled without a transparent strategy is of little
value for HIDS evaluation, since any results may be disputable.

Automation. Since log data is generated in high volumes, it is
usually infeasible to manually label all or even only parts of the logs.
Strategies based on simple keyword matching for labeling (cf. Sect.
1) have limited expressiveness and require manual adjustments
when relevant artifacts such as IP addresses are subject to change.
To alleviate these issues, a log data labeling procedure should reduce
such repetitive and time-consuming manual tasks to a minimum
and pursue label assignment as a fully automatic procedure.

Adaptability. Model-driven testbeds enable adapting, extend-
ing, and reusing components within and across testbeds multiple
times without the need to always start from scratch. Since any
modifications of the TIMs, e.g., changes of attack scripts or logging
infrastructure settings, possibly influence the way attacks manifest
in the logs, it is necessary to adjust the labeling rules accordingly.
A log data labeling framework should therefore support adaptation
and extension of the existing ruleset in accordance with all TIMs.

Granularity. Labeling logs solely by start and stop times of
attacks is not sufficient, since this strategy incorrectly labels logs
corresponding to normal behavior that occur interleaved with at-
tack logs as malicious. In addition, logs corresponding to long-term
attacks that span over large time windows cannot appropriately be
labeled. Labels should be therefore be assigned to individual events.

Moreover, instead of binary labels that only differentiate between
benign and malicious events, distinct labels should be assigned for

each attack activity to increase evaluation granularity, e.g., compute
detection accuracy for different attack types [3]. This also allows to
arrange labels in a hierarchical order so that relationships between
attacks, attack steps, and commands, become apparent.

Applicability. Since log data originates from many distinct
sources, the labeling procedure needs to support a wide range of
log formats. In addition, attack consequences are diverse and may
affect single or multiple events that occur with delays or across
different log files. The framework should thus offer techniques to
label such dispersed and interrelated events.

Reproducibility. Both testbeds and labeling procedures should
only involve open-source tools so that simulations and log datasets
are reproducible by others. This concerns technologies required to
run the labeling framework, e.g., log databases, as well as labeling
rule templates that should be published along with the TIMs.

We designed the Kyoushi framework with the aforementioned
requirements in mind. The following section describes the design of
labeling rule templates, which are a core element of our approach.

4.2 Labeling Rule Templates
As outlined in Sect. 1, common labeling strategies are usually cen-
tered around searching for specific keywords, e.g., the IP address of
an attacker machine, and marking all matching log events as mali-
cious. Unfortunately, this is not possible in model-driven testbed
generation approaches, because these keywords are not available
at the time of designing the TIMs. Furthermore, system log data is
not always discernible by such keywords and only combined and
contextual occurrences of events allow correct label assignment.
To overcome these issues, we propose labeling rule templates that
are designed on the same level of abstraction as TIMs and are thus
independent of artifacts specific to TSMs. In addition, we propose
four types of rules to enable the assignment of labels to events
that could not be labeled with common labeling strategies: query,
sequence, sub query, and parent query rules. In the following, we
describe each rule type in detail and provide examples.

4.2.1 Query Rule. Query rules are the most basic type of label-
ing rule template. Their purpose is to match collected facts with
specific parts of log events and assign labels to all retrieved logs.
Accordingly, this type of rule is only applicable when all relevant
logs are known to match the respective fact in the selected field,
and no logs generated by benign behavior yield matches in that
field. For example, in the simple case where all activities associated
with a malicious domain should be labeled as part of an attack,
it is possible to label a log file that monitors DNS connections by
matching the domain name occurring in the logs with the attacker’s
domain name that was previously extracted as a fact [1].

Figure 2 shows an exemplary query rule for this case. The rule
specifies that all logs in the dnsmasq-inet-firewall index matching
themalicious domain referenced by variable attacker.dnsteal.domain
in the fields dns.answers.name or dns.question.name are assigned
the labels dnsteal. Note that variables such as dns.answers.name
are resolved by the respective field of the parsed logs in the data-
base where the query is executed, while attacker.dnsteal.domain
is a templated variable as indicated by the curly braces and thus
replaced by the respective fact when the rule is rendered from the
template. Thereby, the domain name is a random string extracted



- type: elasticsearch.query
id: dnsteal.domain.match
labels: [dnsteal]
index: [dnsmasq -inet -firewall]
query:

bool:
should:

- regexp:
dns.answers.name: '.*\.{{ attacker.dnsteal.

domain | replace('.', '\.') }}'
- regexp:

dns.question.name: '.*\.{{ attacker.dnsteal.
domain | replace('.', '\.') }}'

Figure 2: Query labeling rule that matches domain names.

- type: elasticsearch.sequence
id: attacker.foothold.apache.access
labels: [attacker_http , foothold]
index: [pcap -attacker_0 , apache_access -intranet_server]
by: url.full
max_span: 3m
filter:

- range:
"@timestamp ":

gte: "{{ ( foothold.start | as_datetime) }}"
lte: "{{ ( foothold.stop | as_datetime) +

timedelta(seconds =1) }}"
sequences:

- '[ apache where event.action == "access" and source
.address == "{{ attacker.vpn_ipv4_address }}" ]'

- '[ http where source.ip == "{{ servers.
intranet_server.default_ipv4_address }}" and
layers.http.http_http_response == true ]'

Figure 3: Labeling rule of sequence type with filtering.

from the TSM for attacker behavior. As visible in the rule, queries
may be connected with boolean operators, e.g., the keyword should
represents a logical OR operation. In addition, it is possible to apply
functions on the terms, e.g., we use a replace function in the sample
rule to escape dots and enable matching with regular expressions.

4.2.2 Sequence Rule. Some attack artifacts in log data cannot be
labeled with query rules, but require a more advanced strategy. In
particular, this concerns logs that can only be identified as part of
the attack by their collective occurrence, while each of the events
individually is indiscernible from logs related to benign behavior.
We therefore propose sequence rules to model such cases.

Figure 3 shows a sample sequence rule that labels two consec-
utively generated log events from two different sources, packet
capture (PCAP) stored in index pcap-attacker_0 and Apache access
logs stored in index apache_access-intranet_server. We use the by pa-
rameter to obtain groups of logs with the same value in the url.full
field and set the maximum time span in which these logs have to
occur through parameter max_span to 3 minutes. The sequence it-
self is specified through a list of queries, where each query matches
log event fields to facts or predefined values, e.g., source.address of
Apache access logs matches the attacker’s VPN IP extracted from
the infrastructure TSM. While this sample demonstrates labeling
of events occurring across different files, we point out that this rule
type is also highly useful to label log sequences of arbitrary lengths
that occur in the same file but are interleaved with benign logs.

The rule also involves a filter that limits the number of logs on
which the query is executed based on their occurrence times. In the
sample rule, this time range spans between start time foothold.start
and stop time foothold.stop of the respective attack phase. Note that 1

- type: elasticsearch.sub_query
id: attacker.foothold.apache.access_dropped
labels: [attacker_http , foothold]
index: [pcap -attacker_0]
query:

- term:
destination.ip: "{{ servers.intranet_server.

default_ipv4_address }}"
sub_query:

index: [apache_access -intranet_server]
query:

- term:
url.full: "{{ HIT.url.full }}"

- term:
source.address: "{{ attacker.vpn_ipv4_address

}}"

Figure 4: Labeling rule of sub query type.

second is added to the stop time to avoid incorrect label assignment
due to rounding of log timestamps without sub-second precision.
Filtering improves runtime performance since fewer comparisons
are carried out and further decreases the probability of incorrect
label assignment, e.g., benign events that match the query but are
generated outside of the interval are not labeled. It is also possible
to filter logs based on value matches or already assigned labels.

4.2.3 Sub Query Rule. Some logs do not contain all fields required
to assign labels to them. Instead, it is necessary to link them to
other events to determine whether they correspond to attacker
behavior or not. Therefore, we propose sub query rules that involve
a two-stage query mechanism: First, a main query is executed to
retrieve a set of events. Then, each of these events is used in another
query that allows matching based on the fields of the main query
result in addition to the usual matching based on facts.

Consider the example in Fig. 4 which aims to label attacker
requests in Apache access logs that cannot be labeled by the cor-
responding responses through the sequence rule from Fig. 3, e.g.,
because the response is not sent or lost. The main query retrieves
all log events with destination IP addresses matching the IP of the
intranet server from PCAP logs in index pcap-attacker_0. The sub
query then iterates over each of these events and labels all Apache
access logs from index apache_access-intranet_server that have the
attacker’s VPN IP in field source.address and the same url.full as the
PCAP event that is accessible through variable HIT.

We point out that sub queries have the disadvantage of a long
runtime since a new query needs to be executed for each result of
the main query. Accordingly, it is usually necessary to include time-
and attribute-based filters in the main query to keep the number
of retrieved logs to a manageable size. We omit these filters in the
sample for brevity and refer to our open-source implementation.

4.2.4 ParentQuery Rule. Parent query rules function similar to sub
query rules, i.e., they comprise a main query and execute another
nested query for each of the retrieved lines. However, while sub
query rules label the results of the nested query, the purpose of
parent query rules is to assign labels to each retrieved log of the
main query if the nested parent query yields at least𝑛 results, where
𝑛 = 1 by default. This rule type is useful to assign labels to log events
that were missed by earlier executed rules, e.g., timeout events that
occur some time after the stop time of the respective attack. In
this case, the main query selects all logs within an extended time
interval (i.e., a sufficiently long delta is added to the stop time in
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Figure 5: Procedure for labeling rule type selection.

the filter) that do not have a specific label assigned, and the parent
query then iterates over all results and queries for related events
with matching attributes. In case that at least one related event is
retrieved in the parent query, a label is assigned to the respective log
from the main query. Parent query rules have similar disadvantages
with respect to the runtime as sub query rules and are also similarly
structured. We therefore omit an example for brevity.

4.2.5 Rule Selection. The previous sections outlined four types of
labeling rules. Thereby, each type offers specific functionalities for
labeling logs in certain situations where common labeling strategies
cannot be applied. To ease the selection of appropriate rule types
depending on the log data at hand, we outline a procedure that
maps properties of attack artifacts to the available types.

Figure 5 depicts this procedure as a flow chart. Whenever it is
possible to limit the queried logs to a certain time interval, e.g., the
start and stop times of attacks, we recommend to add time-based
filters. Second, the presence of certain attributes or labels assigned
by previously executed rules allow to further reduce the number of
logs. Query rules assign labels to logs retrieved by single queries. In
case that attacks reflect in chronological sequences or correlating
events across files, sequence rules should be applied. Otherwise,
sub query rules can be used to label logs retrieved by nested queries
and parent query rules can be used to label logs retrieved by main
queries that also fulfill constraints from nested queries.

4.3 Implementation
This section summarizes our implementation decisions of afore-
mentioned concepts. We realize testbed deployment as well as
data collection with Ansible4 roles. All processors of the labeling
layer are implemented as scripts. We use open-source Logstash
[24] parsers that are available for a large number of common log
formats and integrate well with Elasticsearch [24], which we use
as a database for log storage. The main advantage of Elasticsearch
for our approach is that it is designed for carrying out complex
queries on semi-structured data efficiently. We define our rule types
in YAML syntax based on the Elasticsearch query language and use
the Event Query Language5 for sequence rules. Finally, we generate
rules of these types as templates using the Jinja6 templating engine.
4https://www.ansible.com/
5https://www.elastic.co/guide/en/elasticsearch/reference/current/eql.html
6https://jinja.palletsprojects.com/
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Figure 6: Network structure of the deployed testbed. Con-
nections (1)-(3) correspond to the server takeover attack and
connections (a)-(c) correspond to the data exfiltration attack.

5 EVALUATION
This section outlines the evaluation of our approach. First, we
describe an illustrative scenario for the Kyoushi framework and
provide an overview of the generated labels. We then present the
results of an expert survey that was carried out to validate the
correctness of the assigned labels.

5.1 Illustrative Scenario
We set up a testbed following the model-driven testbed genera-
tion approach outlined in Sect. 3.1. Figure 6 depicts an overview of
the testbed network, which is designed to resemble the network
infrastructure of a small or medium sized enterprise. The testbed
simulates employees accessing file shares, sending and receiving
mails, reading and editing WordPress articles, browsing the web,
and executing commands over SSH. Thereby, the behavior of seven
employees within the Intranet and three employees remotely con-
nected through a VPN tunnel is based on state machines with
transition probabilities derived from user profiles. In addition, we
deploy an attacker machine that generates malicious activity as
part of a server takeover attack and a data exfiltration attack, which
are depicted in Fig. 6 as (1)-(3) and (a)-(c) respectively.

The server takeover attack assumes that the attacker obtained
VPN credentials from a compromised computer and involves a
multi-step attack that takes place over two of the five days of simu-
lation. On the first day, the attacker attempts to gain more informa-
tion about the network during the so-called foothold phase. This
involves running the network scanner Nmap7 to discover possible
targets, execution of WPScan8 and dirb9 to find vulnerabilities of
the WordPress instance running on the intranet server, uploading a
webshell by exploiting a vulnerability of the wpDiscuz plugin (CVE-
2020-24186), reading out the WordPress configuration to obtain the
database password, and dumping the database of usernames and
password hashes. For the second day, we assume that the attacker

7https://nmap.org/
8https://wpscan.com/wordpress-security-scanner
9https://tools.kali.org/web-applications/dirb
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Table 1: Overview of the number of rule templates and number of labeled lines per file for each log data label.
Label Rule templates vpn intranet firewall share Total

Query Seq. Sub Parent openvpn.log
(4083)

wp-access.log
(417516)

wp-error.log
(1272)

error.log
(13)

auth.log
(777)

audit.log
(2824)

dnsmasq.log
(158360)

audit.log
(760)

dnsteal 2 43302 1 43303
dnsteal-received 1 36536 36536
dnsteal-dropped 1 1 6766 6766
exfiltration-service 1 1 1
foothold 1 5 2 2 308 406402 1268 407978
attacker_http 4 2 2 406402 1268 407670
dirb 1 406392 1268 407660
webshell_upload 1 3 3
webshell_cmd 1 7 7
escalate 2 7 28 1 12 19 60
reverse_shell 1 1 1
attacker_change_user 2 5 9 14
escalated_command 4 8 10 18
escalated_sudo_session 1 6 6
attacker_vpn 2 2 336 336

Total 9 13 2 3 336 406402 1268 1 12 19 43302 1 451341

was able to crack one of the retrieved passwords of a system user.
The attack thus continues with the attacker deploying a reverse
shell through the webshell and misusing the compromised account
to gain elevated privileges. This so-called escalate phase ends with
the attacker executing some commands, e.g., inspecting SSH keys.

The second attack scenario is centered on the exfiltration of sen-
sitive data from the internal file share. Other than the first attack
case, we assume that the exfiltration is already ongoing at the be-
ginning of the simulation and stops after two days. The exfiltration
script scans the file share and encodes all found files in base64
before sending it through the DNS server to the attacker, where
the exfiltration tool DNSteal10 receives the data and reconstructs
the files. Note that we designed this test case as a challenge for
anomaly-based IDSs, since it is more difficult to detect the absence
of activities rather than the appearance of new events.

We selected eight log files that we considered relevant for eval-
uating our labeling framework, since they contain traces of the
attacks and are files typically monitored by IDSs. These sources
include VPN logs, access logs, authentication logs, audit logs, and
more. To design our labeling rule templates, we disabled user simu-
lations and executed the attacks in an idle network to observe their
consequences. In total, 27 rule templates were developed to assign
15 distinct labels to events from all selected files. In the following,
we present the resulting labels in detail.

5.2 Results
We ran the simulation as described in the previous section and
collected logs and facts from all machines. We then executed the
labeling procedure with the rule templates that we modeled as
part of the attack TIMs. We gathered the generated labels for each
log file and analyzed their frequencies and relationships. In the
following, we describe the results of our analysis.

The left side of Table 1 provides an overview of the numbers
and types of rule templates and their corresponding labels. For
example, the template rule shown in Fig. 2 is a query rule that
assigns label dnsteal and thus contributes to the respective counter
in column Query. Note that it is possible that a single rule assigns
multiple labels and that different rules assign the same label. For
this reason, the total number of rules displayed in the last row

10https://github.com/m57/dnsteal
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Figure 7: Euler diagram depicting label relationships.

does not represent the sum of all labels assigned per rule type, but
instead the total number of rules independent from the number of
labels they assign. For example, we designed two sub query rule
templates and both of them assign labels foothold and attacker_http
(cf. Fig. 4), thus both counters and the total show 2. This breakdown
shows that our scenario mostly requires query and sequence rules
and comparatively few sub query and parent query rules.

The right side of Table 1 depicts the number of labeled log events
in each file, where the top header row states the host at which the file
was collected, and the bottom header row states the specific file and
its number of lines in brackets. Similar to rules, lines can be assigned
multiple labels and thus the bottom row depicts the total number of
labeled events per file. We state the total number of assigned labels
across all files on the right hand side of the table. The results indicate
that the numbers of labeled events differ greatly depending on the
attack and considered file, i.e., most labels are either related to the
dirb attack that mainly affects the “intranet/wp-access.log” file or
the DNSteal attack that mainly affects the “firewall/dnsmasq.log”
file. The table also shows that most attacks manifest in specific files,
except for the “vpn/openvpn.log” file that contains traces of both
foothold and escalate phase of the first attack scenario.

This relationship is also depicted in the Euler diagram of Fig. 7,
where attacker_vpn stretches across foothold and escalate. Moreover,
this visualization makes it easy to see the hierarchical structure
of labels, e.g., the dirb attack involves HTTP traffic and thus logs
labeled dirb are a subset of logs labeled attacker_http.

5.3 Expert Survey
The previous section provided an overview of the labels generated
by the Kyoushi framework. We evaluate our approach by validating

https://github.com/m57/dnsteal


the correctness of these labels. For this, we set up a survey and ask
security engineers and IT analysts to review the logs and labels.

Our dataset involves a total of 451, 341 labels, which makes ver-
ification by humans impossible without sampling the data. We
restrict the evaluation to labels dirb, webshell_upload, webshell_cmd,
reverse_shell, attacker_change_user, escalated_command, dnsteal,
exfiltration-service, and dnsteal to avoid labels of supersets so that
users are presented with the most specific label. We then randomly
select events corresponding to these labels and present them to
survey participants. Since the context of occurrence is helpful and
sometimes essential for the correct interpretation of logs, we dis-
play the events with four immediately succeeding and preceding
log lines. Note that the experts also have access to the whole dataset
without labels as well as details on the launched attacks.

Figure 8 shows a sample question from the survey. The partic-
ipant is informed that the dirb label was assigned to the marked
Apache access log line and tasked to determine whether this label
is correct or not. Participants may select their opinion on a seven-
point scale ranging from strong disagreement to strong agreement
and including “No answer” as a neutral option. The log sample in
the figure depicts several requests made in a short time interval
(all lines have the same timestamp) and in seemingly alphabetical
order, where all requested pages start with the letters “em”. A par-
ticipant with sufficient knowledge about the attack could therefore
conclude that these lines are likely artifacts of a dictionary scan,
and thus agree with the assigned label dirb. We decided for such a
quantitative evaluation over expert reviews of our developed rules
for two reasons: First, we aim to ensure an objective evaluation with
adequate efforts. Second, we base the evaluation on the generated
labels rather than the rules to focus on the actual output of our
approach and recognize any incorrectly labeled events.

In addition to labels for attacker behavior, we also sampled un-
labeled lines and asked participants to determine whether these
lines actually correspond to benign behavior. Moreover, control
questions ensure that participants do not just agree to all questions,
but are actually able to differentiate malicious from benign behav-
ior. We therefore add questions with purposefully incorrect labeled
logs, i.e., events that received an attack label from the Kyoushi
framework but are displayed with label normal, and benign events
that are presented with a randomly selected attack label from the
same file. This setup allows us to identify and possibly exclude par-
ticipants who select random answers or do not have the technical
skills required to interpret the logs. However, we point out that
the purpose of this survey is not to rate the ability of participants
to recognize attacks in log data, but instead to determine whether
manually assigned labels based on expert knowledge diverge from
labels generated by our automatic procedure. Thereby, the survey
format aims to discover incorrect rules rather than missing rules,
since it is unlikely that logs without labels that are actually part of
an attack are selected during sampling of benign events.

We hosted the survey online and asked engineers with security
expertise for anonymous participation. In particular, we contacted
cyber security experts, penetration testers, and capture-the-flag con-
testants and invited them to share the link to the survey among their
peers. In the beginning of the survey, we asked participants about
their roles. Then, the same questions were displayed in random
order to each participant. After one week, we obtained responses

from 16 participants, out of which 8 skipped more than 25% of all
questions and were thus excluded. The remaining 8 participants
skipped less than 2% of all questions on average, indicating their
high confidence in filling out the survey. The majority of these
participants (5) identify their roles as security analysts, 2 as pene-
tration testers, and 1 as a cyber security research engineer. In the
following, we analyze the answers of these participants.

Figure 9 shows the answers to questions with correct labels as a
boxplot, where the labels and log files associated with the respective
question are displayed on the horizontal axis and each point rep-
resents an answer. For example, the answers to the question from
Fig. 8 are displayed on the left hand side of the plot with label dirb
(intranet/wp-access.log) and show that 7 out of 8 participants agree
or strongly agree with the assigned label. Note that “No answer”
responses are excluded so that distributions are not distorted.

Overall, the plot shows a clear trend towards agreement for
labeled attacks, with few exceptions. One outlier is the label re-
verse_shell in file intranet/error.log, which refers to a log event with
message “Bad file descriptor”. We argue that the missing timestamp
and rather general error message made it difficult for participants to
relate the event to the attack. Moreover, label attacker_change_user
in file intranet/audit.log received mixed answers. This is likely due
to the facts that audit logs are more difficult to interpret for inex-
perienced analysts and that in this case relevant attack indicators
occur in the preceding lines, not in the marked line itself.

Interestingly, logs correctly labeled as normal have slightly lower
agreement scores on average than logs corresponding to attacks.We
argue that this is due to the fact that analysts have higher confidence
in their answer when they recognize indicators for specific attacks
that fit the proposed label, while the lack of such indicators is not
sufficient to deem normal logs as such with high certainty.

Figure 10 shows the survey results with respect to incorrectly
labeled lines. Note that the horizontal axis shows the actual labels
assigned to the logs, not the randomly selected incorrect ones. The
overall trend towards disagreement indicates that participants were
able to recognize incorrect labels. Similar to the previous results
from the correctly labeled lines, there appears to be less consen-
sus among participants when verifying labels of normal behavior.
One extreme example is the question labeled normal (intranet/wp-
error.log), where logs are incorrectly labeled as dirb and involve “no
such file or directory” warnings that are unrelated to the attacks.
Since such events likely occur during scans, it is understandable
that some participants were drawn towards agreement.

6 DISCUSSION
The evaluation results indicate that the Kyoushi framework is useful
for log data labeling. In the following, we discuss the fulfillment of
the requirements stated in Sect. 4.1 and point out some limitations.

Label correctness obviously depends on manually designed rules.
However, we argue that our intuitive rule format makes it easy
to comprehend the consequences of rules and the fact that only
few rules are required to label even a complex scenario reduces
the chances of errors. The requirement on automation is fulfilled
as labeling rules only have to be defined once to be applied multi-
ple times. This enables application within model-driven testbeds
and thus facilitates generation of diverse log datasets on a large



Figure 8: Survey question asking the participant to decide if the marked line is correctly labeled as part of the dirb attack step.
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Figure 9: Boxplots of survey answers to correctly labeled lines show that participants mostly agreed with assigned labels.
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Figure 10: Boxplots of survey answers to incorrectly labeled lines show that participants recognized consciously placed errors.

scale with low manual effort [19]. Our labeling rules also fulfill
the requirement on adaptability as they are dynamically filled out
with testbed facts. Regarding the requirement on granularity, our
methodology enables label assignment to individual events. Each
rulemay assign arbitrarymany labels and each log eventmay obtain
multiple distinct labels. As a consequence, our labels have hierar-
chical relationships (cf. Sect. 5.2) that enable evaluating HIDSs sep-
arately for different attack steps. Our labeling framework is easy to
apply on many common log formats since it relies on Logstash and
our rules are capable of matching diverse attack artifacts. Finally,
our framework is open-source and thus all results are reproducible.

Our labeling approach is primarily designed for model-driven
testbeds, but also suitable for more general use cases. In particular,
labeling rules as may be applied to pre-existing log datasets without
labels or logs generated in traditional testbeds as long as log parsers
are available and the facts used by the labeling rules are manually

filled out. We argue that it is usually possible to gather the required
facts with tolerable manual effort either from expert knowledge
about the testbed at hand, documentation accompanying the log
dataset, or by forensically analyzing the logs.

Moreover, we presented our approach in an offline setting, i.e.,
labeling is carried out after all logs are available. However, our
framework is also capable of assigning labels online, i.e., simul-
taneous to log data generation. This could be interesting for live
demonstrations and experiments rather than dataset generation.

While this work mainly focuses on labeling attack artifacts, our
concepts could also be applied for labeling all kinds of activities. For
example, labels could be assigned to benign activities carried out
by different users. This could be beneficial to evaluate user profile
mining algorithms that analyze log data [16].

As pointed out in Sect. 5.1, our recommended approach for de-
signing the labeling rules is to launch the attacks in an idle network



(i.e., without running user simulations) and observe their manifes-
tations in log data. The main issue with this strategy is that testbeds
are generally non-deterministic and thus random or otherwise un-
expected events that may occur in some testbed instances are not
correctly labeled in case that they were not observed before. There
is no simple way to fully resolve this problem, however, we point
out that our framework makes it easy to manage, adjust, and repeat-
edly execute labeling rules in hindsight after all logs are gathered.
In case that any missing or incorrect labels are recognized when
analyzing the resulting data, it is therefore simple to change or
update the set of rules and regenerate all labels.

Our framework does not address the problem of labeling missing
events, i.e., events that fail to occur as consequences of attacks. We
argue that evaluation based on attack times is sufficient in such
cases and do not expect such artifacts in our scenario. Furthermore,
we considered to implement label weights, i.e., numeric values that
specify the strength of association between events and labels. This
could solve the problem of sometimes fuzzy boundaries between
benign and malicious behavior, e.g., labels for events generated by
the attacker but not directly related to exploits could receive a low
weight. We leave this task for future work.

7 CONCLUSION
This paper presents the Kyoushi framework, which integrates la-
beling rules into model-driven testbed generation approaches. This
enables to generate arbitrary numbers of labeled datasets for HIDS
evaluation in diverse environments. The main idea is to design rules
as templates that are reusable across testbeds and thus eliminate
the need for manual adjustments. We propose four types of rules
(query, sequence, sub query, and parent query) to describe matching
criteria for system logs that occur in groups and are interrelated
with other events across log files. We apply our framework in an
illustrative scenario and show that only few rules and manageable
manual effort are necessary to label several diverse attacks that
leave artifacts in different files. The expert survey carried out as
part of the evaluation indicates the correctness of our labels. For
future work, we plan to gather and compare datasets from several
automatically generated testbeds with variations. In addition, we
consider to use gamification or capture-the-flag contests rather than
expert surveys to attract a larger audience for label verification.
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