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A B S T R A C T

Automatic log file analysis enables early detection of relevant incidents such as system failures. In particular,
self-learning anomaly detection techniques capture patterns in log data and subsequently report unexpected
log event occurrences to system operators without the need to provide or manually model anomalous scenarios
in advance. Recently, an increasing number of approaches leveraging deep learning neural networks for
this purpose have been presented. These approaches have demonstrated superior detection performance in
comparison to conventional machine learning techniques and simultaneously resolve issues with unstable data
formats. However, there exist many different architectures for deep learning and it is non-trivial to encode raw
and unstructured log data to be analyzed by neural networks. We therefore carry out a systematic literature
review that provides an overview of deployed models, data pre-processing mechanisms, anomaly detection
techniques, and evaluations. The survey does not quantitatively compare existing approaches but instead aims
to help readers understand relevant aspects of different model architectures and emphasizes open issues for
future work.

ontents

1. Introduction ...................................................................................................................................................................................................... 2
2. Background ....................................................................................................................................................................................................... 3

2.1. Preliminary definitions............................................................................................................................................................................ 3
2.1.1. Deep learning .......................................................................................................................................................................... 3
2.1.2. Log data .................................................................................................................................................................................. 3
2.1.3. Anomaly detection ................................................................................................................................................................... 3

2.2. Challenges ............................................................................................................................................................................................. 3
3. Survey method .................................................................................................................................................................................................. 4

3.1. Search strategy....................................................................................................................................................................................... 4
3.1.1. Initial literature collection with search string.............................................................................................................................. 4
3.1.2. Selection of relevant publications .............................................................................................................................................. 4

3.2. Reviewed features .................................................................................................................................................................................. 5
4. Survey results .................................................................................................................................................................................................... 5

4.1. Bibliometrics.......................................................................................................................................................................................... 5
4.1.1. Publications per year ................................................................................................................................................................ 5
4.1.2. Citations.................................................................................................................................................................................. 6

4.2. Deep learning techniques ........................................................................................................................................................................ 6
4.2.1. Deep learning models ............................................................................................................................................................... 6
4.2.2. Training loss function ............................................................................................................................................................... 8
4.2.3. Operation mode ....................................................................................................................................................................... 8

4.3. Log data preparation .............................................................................................................................................................................. 8
4.3.1. Pre-processing.......................................................................................................................................................................... 9
4.3.2. Event grouping ........................................................................................................................................................................ 9
4.3.3. Feature extraction .................................................................................................................................................................... 10
4.3.4. Feature representation .............................................................................................................................................................. 10

∗ Corresponding author.
E-mail addresses: max.landauer@ait.ac.at (M. Landauer), e1621235@student.tuwien.ac.at (S. Onder), florian.skopik@ait.ac.at (F. Skopik),

arkus.wurzenberger@ait.ac.at (M. Wurzenberger).
ttps://doi.org/10.1016/j.mlwa.2023.100470
eceived 23 March 2023; Received in revised form 18 April 2023; Accepted 23 April 2023
vailable online xxxx
666-8270/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.mlwa.2023.100470
https://www.elsevier.com/locate/mlwa
http://www.elsevier.com/locate/mlwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mlwa.2023.100470&domain=pdf
mailto:max.landauer@ait.ac.at
mailto:e1621235@student.tuwien.ac.at
mailto:florian.skopik@ait.ac.at
mailto:markus.wurzenberger@ait.ac.at
https://doi.org/10.1016/j.mlwa.2023.100470
http://creativecommons.org/licenses/by/4.0/


M. Landauer, S. Onder, F. Skopik et al. Machine Learning with Applications 12 (2023) 100470
4.4. Anomaly detection techniques ................................................................................................................................................................. 11
4.4.1. Anomaly types ......................................................................................................................................................................... 11
4.4.2. Network output........................................................................................................................................................................ 11
4.4.3. Detection method ..................................................................................................................................................................... 11

4.5. Evaluation & reproducibility.................................................................................................................................................................... 12
4.5.1. Data sets ................................................................................................................................................................................. 12
4.5.2. Evaluation metrics.................................................................................................................................................................... 14
4.5.3. Benchmark approaches ............................................................................................................................................................. 14
4.5.4. Reproducibility ........................................................................................................................................................................ 15

5. Discussion ......................................................................................................................................................................................................... 15
6. Conclusion ........................................................................................................................................................................................................ 17

CRediT authorship contribution statement ........................................................................................................................................................... 17
Declaration of competing interest ........................................................................................................................................................................ 17
Data availability ................................................................................................................................................................................................ 17
Acknowledgments .............................................................................................................................................................................................. 17
References......................................................................................................................................................................................................... 17
R

R

R

R

R
R

1. Introduction

Log files provide a rich source of information when it comes to
monitoring computer systems. Thereby, the majority of log events are
usually generated as consequences of normal system operations, such
as starting and stopping of processes, restarting of virtual machines,
users accessing resources, etc. However, applications also produce logs
when faulty or otherwise undesired system states occur, for example,
failed processes, availability issues, or security incidents. These traces
of unexpected and possibly unsafe system activities are important for
system operators that timely need to act upon them to prevent or
diminish system damage and avoid adverse cascading effects.

The main problem for this kind of log file analysis is that it is non-
trivial to identify these relevant log events within the much larger
number of less interesting traces of standard system usage. In par-
ticular, the sheer amount of logs produced by modern applications
renders manual analysis infeasible and necessitates automatic mech-
anisms (Wang, Zhang, Wang & Cao, 2021). Unfortunately, manually
coded signatures and rules that search for specific keywords in logs only
have limited applicability and are not suitable for scenarios that are
not known beforehand (Liao, Lin, Lin, & Tung, 2013). It is therefore
necessary to deploy anomaly detection techniques that automatically
learn models representing the normal baseline of system behavior and
subsequently disclose any deviations from these models as possibly
adverse activities that require attention by human operators.

Machine learning provides many viable techniques for the purpose
of anomaly detection in log files and many different approaches have
been proposed in the past, including clustering (Landauer, Skopik,
Wurzenberger, & Rauber, 2020) and workflow mining (He, Zhu, He, &
Lyu, 2016), statistical analysis of event parameters (Kruegel & Vigna,
2003), time-series analysis to recognize changes of event frequen-
cies (Landauer, Wurzenberger, Skopik, Settanni, & Filzmoser, 2018),
and many more (Chandola, Banerjee, & Kumar, 2009; Liao et al.,
2013). Recently, researchers started using deep neural networks for
log-based anomaly detection in an attempt to repeat the successes
of deep learning from image and speech recognition that outperform
conventional machine learning methods (LeCun, Bengio, & Hinton,
2015). However, as system log events are generally unstructured and
involve intricate dependencies, it is non-trivial to prepare the data in
a way to enable ingestion by neural networks and extract features
that are relevant for detection. Moreover, the wide variety of existing
deep learning architectures such as recurrent or convolutional neural
networks makes it difficult to select an appropriate model for a specific
use-case at hand and understand their respective requirements on the
format and properties of the input data.

To the best of our knowledge there is currently only a limited
overview of the state-of-the-art of log-based anomaly detection with
deep learning (Chen, Liu, Gu, Su, & Lyu, 2021; Kwon et al., 2019; Le &
2

Zhang, 2022; Yadav, Kumar, & Dhavale, 2020). As a consequence it is
difficult to understand what features are suitable to be extracted from
raw log data, how these features could be transformed into a format
that is adequate to be ingested by neural networks, and which model
architectures are appropriate for detecting specific patterns in logs.
Existing surveys only compare few anomaly detection approaches and
focus mainly on sequential patterns in log data (Chen, Liu, et al., 2021;
Le & Zhang, 2022; Yadav et al., 2020), present broad studies on system
log data analysis that do not sufficiently cover deep learning models
and challenges (Bhanage, Pawar, & Kotecha, 2021; Zhao, Wang, et al.,
2021), or focus on network traffic rather than system log data (Kwon
et al., 2019).

We therefore carry out a systematic literature review on deep
learning for anomaly detection in log data. Our main focus is thereby
to survey scientific publications on the deployed model architectures,
their respective requirements and transformations for handling unstruc-
tured input log data, the methods used to differentiate between normal
and anomalous data samples, and the presented evaluations. The results
of this study are beneficial for researchers and industries alike, because
a better understanding of challenges and features of different deep
learning algorithms avoids pitfalls when developing anomaly detection
techniques and eases selection of existing detection systems for both
academic and real-world use-cases. Moreover, a detailed investigation
of pre-processing strategies is essential to utilize all information avail-
able in the logs when carrying out anomaly detection and to understand
the influence of data representations on the detection capabilities,
in particular, what types of anomalies can be detected under which
circumstances. Regarding scientific evaluations, we particularly pay
attention to relevant aspects of experiment design, including data sets,
metrics, and reproducibility, to point out deficiencies in prevalent
evaluation strategies and suggest remedies. Finally, our study also
aims to create a work of reference and establish a starting point for
future research. We point out that this survey does not quantitatively
compare detection performances of the reviewed approaches as only
few open-source implementations are available and comparisons of
these approaches are already presented in other surveys (Chen, Liu,
et al., 2021; Le & Zhang, 2022). In alignment with the aforementioned
goals we formulate the research questions of this survey as follows:

Q1: What are the main challenges of log-based anomaly detection
with deep learning?

Q2: What state-of-the-art deep learning algorithms are typically ap-
plied?

Q3: How is log data pre-processed to be ingested by deep learning
models?

Q4: What types of anomalies are detected and how are they identified
as such?

Q5: How are the proposed models evaluated?
Q6: To what extent do the approaches rely on labeled data and
support incremental learning?
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Q7: To what extent are the presented results reproducible in terms of
availability of source code and used data?

The remainder of this paper is structured as follows. Section 2 first
explains the terms deep learning, log data, and anomaly detection,
and then provides an overview of common challenges. We explain our
methodology for selecting relevant publications and carrying out the
survey in Section 3. Section 4 presents all results of our survey in detail.
We discuss these results and answer our research questions in Section 5.
Finally, Section 6 concludes this paper.

2. Background

In this section we first clarify some general concepts and terms
relevant for anomaly detection in log data based on deep learning. We
then outline scientific challenges that are specific to that research field.

2.1. Preliminary definitions

The study carried out in this paper hinges on an understanding of
three main concepts: deep learning, log data, and anomaly detection.
However, the exact characteristics and consequential requirements of
the respective fields may be used differently across research areas and
existing literature. In the following, we therefore describe the basic
properties of these three concepts.

2.1.1. Deep learning
Artificial neural networks (ANN) have been developed in an attempt

to recreate biological information processing systems in the form of
connected communication nodes. For this purpose, varying numbers
of nodes are arranged in sequences of layers, in particular, an in-
put layer that reads in the data, several hidden layers connecting
neighboring layers with weighted edges, and an output layer. Nodes ac-
tivate when receiving specific signals on their connected edges, which
in turn generates the input for subsequent layers. The main idea is
that such networks are capable of recognizing non-linear structures
in the input data and subsequently classifying the processed instances
through training, which involves minimizing the error of classifications
by adjusting the weights of edges accordingly. Thereby, ANN enable
supervised training where labels for all classes are available (i.e., data
samples are marked with labels such as normal or anomalous), semi-
supervised training where labels of some classes are available, as well
as unsupervised learning where no labels are available.

In general, deep learning algorithms are understood as neural net-
works with multiple hidden layers. Several different architectures of
deep neural networks have been proposed in the past, such as recurrent
neural networks (RNN) for sequential input data. Deep learning has
been shown to outperform conventional machine learning methods
(e.g., support vector machines or decision trees) and even human
experts in many application areas such as image classification, speech
recognition, and many more (LeCun et al., 2015; Sarker, 2021b).

2.1.2. Log data
Log data are a chronological sequence of single- or multi-line

events generated by applications to permanently capture specific sys-
tem states, in particular, for manual forensic analysis in case that fail-
ures or other unexpected incidents occur. Log events are usually avail-
able in textual form and range from structured vectors (e.g., comma-
separated values) over semi-structured objects (e.g., key–value pairs)
to unstructured human-readable messages with heterogeneous event
types. Despite the fact that no unified log format exists, log events
usually contain their generation time stamp as one of their event
parameters. Other parameters that are sometimes present in different
types of log data are logging levels (e.g., INFO or ERROR) or process
identifiers that link sequences of related events (Landauer, Skopik,

Wurzenberger, & Rauber, 2020).

3

While single log events describe (part of) the system state in one
particular point in time, groups of log events represent the dynamic
workflows of the underlying program logic. The reason for this is that
log events are generated by print statements purposefully placed by
software developers throughout their code to support understanding of
program activities and debugging. These statements comprise of static
parts, i.e., hard-coded strings, and variable parts, i.e., parameters that
are dynamically determined during program runtime. In the past, a
large amount of research was directed towards automatic extraction
of so-called log keys (also known as log signatures, log templates,
or simply log events) that represent templates for the original print
statements and enable parsing of logs (Zhu et al., 2019). These parsers
allow to derive values from logs that are more suitable to be used
for subsequent analysis than unstructured log messages, in particular,
through (i) assignment of event type identifiers to log events and (ii)
extraction of parameters from log messages (Bao et al., 2018).

2.1.3. Anomaly detection
Anomalies are those instances in a data set that exhibit rare or

otherwise unexpected characteristics and thus stand out from the rest
of the data (Chandola et al., 2009). For the purpose of detection, the
conformity of these data instances is usually measured through one
or more continuous or categorical attributes that are associated with
each instance and enable the computation of similarity metrics. For
independent data, it is sufficient to declare single or small groups of
instances with high dissimilarities to all other data points as outliers,
which are also referred to as point anomalies. For all data where
instances are not independent from each other, e.g., all kinds of ordered
data including log data, two additional types of anomalies occur.
First, contextual anomalies are instances that are only anomalous with
respect to the context they occur (but not otherwise), such as the time
of occurrence. For example, consider the start of a daily executed data
backup procedure that suddenly takes place outside of the scheduled
times. Second, collective anomalies are groups of instances that are only
anomalous due to their combined occurrence (but not individually),
such as a specific sequence of log events.

An implicit assumption of most anomaly detection techniques is that
the analyzed data holds far fewer anomalies than normal instances.
This enables that detection takes place in a fully unsupervised man-
ner, i.e., no labeled data is necessary to train the models. However,
many scientific approaches instead pursue semi-supervised detection,
where training data containing only normal instances are available and
evaluation then takes place on a test data set comprising both normal
and anomalous instances. The main advantages of semi-supervised
operation is that anomalous instances are not learned by the models
and that it is often relatively simple to gather normal data, while
modeling and labeling anomalies is less straightforward. Accordingly,
approaches for supervised anomaly detection have lower applicability
and are comparatively rare (He et al., 2016).

2.2. Challenges

Log-based anomaly detection has been an active field of research
for decades. Thereby, most of the presented approaches rely on con-
ventional machine learning techniques. However, the last few years
have seen a strong increase of approaches that leverage deep learning
to disclose anomalous log events that relate to unexpected system
behavior. In the following, we summarize the main challenges that need
to be overcome for effective and applicable detection.

• Data representation. Deep learning systems generally consume
structured and numeric input data. It is non-trivial to feed log
data into neural networks as they frequently involve a mix of het-
erogeneous event types, unstructured messages, and categorical
parameters (Chalapathy & Chawla, 2019; Yadav et al., 2020).
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• Data instability. As applications evolve, new log event types may
occur that differ from the ones in the training data. In addition,
the observed system behavior patterns are subject to change as
technological environments and their utilization vary over time.
Deep learning systems therefore need to incrementally update
their models and adapt their baseline for normal system behavior
to enable real-time detection (Chalapathy & Chawla, 2019; Chen,
Liu, et al., 2021; Le & Zhang, 2022; Yadav et al., 2020; Zhang
et al., 2019).

• Class imbalance. Anomaly detection inherently assumes that
normal events outnumber anomalous ones. Many approaches
based on neural networks are known to perform sub-optimally for
imbalanced data sets (Chalapathy & Chawla, 2019; Le & Zhang,
2022).

• Anomalous artifact diversity. Manifestations of anomalies affect
log events as well as parameters thereof in various ways, in-
cluding changes of sequential patterns, frequencies, correlations,
inter-arrival times, etc. Detection techniques are often designed
only for properties of specific anomaly types and are therefore
not generally applicable.

• Label availability. As anomalies represent unexpected system be-
havior, there are generally no labeled anomaly instances available
for training. This restricts applications to semi- and unsupervised
deep learning systems, which are known to achieve lower detec-
tion performance than supervised approaches (Chen, Liu, et al.,
2021; Le & Zhang, 2022).

• Stream processing. Logs are generated as a continuous stream of
data. To enable on-the-fly monitoring rather than forensic anal-
ysis, deep learning systems need to be designed for single-pass
data processing when it comes to detection and model updat-
ing (Landauer, Skopik, Wurzenberger, & Rauber, 2020; Le &
Zhang, 2022).

• Data volume. Log data is generated in high volumes, with some
systems producing millions (Xu, Huang, Fox, Patterson, & Jordan,
2009b) or even billions (Mi, Wang, Zhou, Lyu, & Cai, 2013) of
events daily. Efficient algorithms are required to ensure real-time
processing in practical applications, in particular, when running
on machines with few computational resources such as edge
devices.

• Interleaving logs. Sequences of related log events may be inter-
leaving each other when many processes operate simultaneously
or distributed logs are collected centrally. It is non-trivial to
retrieve the original event sequences when events lack session
identifiers (Le & Zhang, 2022).

• Data quality. Low data quality may be the result of improper
log collection or technical issues during log generation and cause
negative effects on machine learning effectiveness. Common prob-
lems involve incorrect time stamp information, event ordering,
missing events, duplicated records, mislabeled events, etc. Fischer
et al. (2020), Suriadi, Andrews, ter Hofstede, and Wynn (2017).

• Model explainability. Approaches based on neural networks
generally suffer from a lower explainability than conventional
machine learning methods. Difficulties to understand the reasons
behind both correct and incorrect classifications are especially
problematic when it comes to making justified decisions in re-
sponse to critical system behavior or security incidents (Chalapa-
thy & Chawla, 2019; Chen, Liu, et al., 2021).

3. Survey method

This section outlines the method that was used to carry out the sys-
tematic literature review. We first describe our strategy for collecting
relevant literature and then present the evaluation criteria that we used

to analyze the retrieved papers.
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Fig. 1. Composition of the search string used to retrieve relevant literature.

3.1. Search strategy

In this section we describe the process of gathering relevant pub-
lications to be included in the survey. First, an initial collection of
literature is collected using a web search. Subsequently, relevant papers
are selected using inclusion, exclusion, and quality criteria.

3.1.1. Initial literature collection with search string
In order to obtain an initial set of approaches from the state-of-

the-art, we assemble a search string to query common databases for
scientific publications. In particular, we design the search string so that
only publications containing the three main concepts relevant for this
survey are retrieved: log data, anomaly detection, and deep learning.
Since some publications use different terminology and to decrease
the likelihood that relevant publications are missed, we also use the
terms ‘‘system log(s)’’, ‘‘event log(s)’’, ‘‘log file(s)’’, ‘‘log event(s)’’ as
alternatives for ‘‘log data’’, and ‘‘neural network(s)’’ as an alternative
for ‘‘deep learning’’. We omit the term ‘‘log’’ without any other word as
it yields many results that contain logarithms but are not relevant for
our study. Fig. 1 displays the final search string.

We then use this search string to gather publications from the fol-
lowing databases: Science Direct,1 Scopus,2 SpringerLink,3 ACM Digital
Library,4 IEEE Xplore,5 Google Scholar,6 and Web of Science.7 The
search was conducted in January of 2022 and returned a total of 2925
publications. In the following section, we describe our method for
selecting relevant publications from this set.

3.1.2. Selection of relevant publications
To sort out publications that are not relevant for this survey and

reduce the set of publications to a manageable size, we define multiple
selection criteria and apply them on our initial collection. Our main
criterion for including the publication in the survey is as follows: The
model proposed in the publication applies deep learning techniques (i.e., a
multi-layered neural network) for anomaly detection in heterogeneous and
unstructured log data. Moreover, we define several exclusion criteria
that we use to omit publications with low relevance or otherwise
inappropriate format. The list of exclusion criteria is as follows.

1 https://www.sciencedirect.com/
2 https://www.scopus.com/
3 https://link.springer.com/
4 https://dl.acm.org/
5 https://ieeexplore.ieee.org/
6 https://scholar.google.com/
7 https://www.webofscience.com/

https://www.sciencedirect.com/
https://www.scopus.com/
https://link.springer.com/
https://dl.acm.org/
https://ieeexplore.ieee.org/
https://scholar.google.com/
https://www.webofscience.com/
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• There is no indication stated in the paper that the presented ap-
proach is applicable or designed for application with log data. Our
survey does not attempt to adopt methods from other domains for
log data analysis.

• There exists a more recent publication that presents the same or
a similar study. The purpose of this criteria is to ensure that the
most up-to-date versions of specific approaches are analyzed.

• The publication only applies an existing approach without novel
modifications from the original concept.

• The publication is in any language other than English.
• The publication is not available in electronic form.
• The publication is a book, technical report, lecture note, pre-

sentation, review, or thesis. In these cases, the corresponding
conference or journal publications were reviewed if possible.

Note that we do not constraint the publications to a specific time
ange in order to avoid missing any older publications that are nonethe-
ess relevant for this survey. However, we aim to omit publications
f generally lower quality that do not meet the minimum scientific
tandards. We therefore only select publications that meet the following
uality criteria in addition to our main inclusion criterion.

• The purpose of the study and its findings are explicitly stated,
e.g., the design of a deep learning system for the purpose of
anomaly detection is stated as the main contribution of the paper.

• The applied deep learning models and their parameters are rigor-
ously described, i.e., it is clear to the reader what type of deep
learning model was selected and how its layout was designed,
e.g., how many layers it comprises.

• The publication includes a sound evaluation of the presented
approach, comprising a convincing motivation for the design of
the conducted experiments, a comprehensive description of the
evaluation process and overall setup, an explanation for choosing
the captured metrics, and a detailed discussion of the gathered
results and their implications.

• The data sets used for evaluating the approach are referenced or
described. This criteria ensures that our survey does not include
publications presenting potentially misleading findings originat-
ing from data sets that are inadequate for anomaly detection.

• Visualizations are clear and readable. Incomprehensible presenta-
tion of results are misleading and lack scientific value.

Our selection procedure is a two-stage process. First, we reduce
he initial collections of publications using the inclusion and exclusion
riteria based on the title and abstract of each paper. After this stage
31 publications remained. In the second stage, we carry out the
election using all aforementioned criteria based on the contents of
ach paper. We eventually obtained 62 papers that were included in
his survey. The following section outlines our method for analyzing
hese publications.

.2. Reviewed features

To ensure that we analyze the selected publications on a common
cheme and address our research questions, we formulate a list of
eatures that we assess for each paper. The following set of questions
oncerns the applied deep learning (DL) model and mode of operation.

DL-1: Which deep learning models are used?
DL-2: Which training loss functions are applied?
DL-3: Does the approach support online or incremental8 learning?
DL-4: Does training take place in un-, semi-, or supervised manner?

8 Online or incremental processing refers to single-pass procedures where
he runtime grows approximately linear with the number of processed lines.
 c

5

We then analyze the different ways how the reviewed approaches
feed raw log data into deep learning models. The following questions
therefore address the pre-processing (PP) and transformation of logs
into numeric vector or matrix representations.

P-1: How are raw logs pre-processed?
P-2: What features are extracted from pre-processed logs?
P-3: How are extracted features represented as vectors?

The next set of questions deals with the anomaly detection (AD).
In particular, we are interested in the different types of anomalies to
understand whether they are linked to the features extracted from the
raw logs and their representations as vectors.

AD-1: What types of anomalies are detected by the approach?
AD-2: How is the output of the deep neural network9 used for anomaly

detection?
AD-3: How are anomalies differentiated from normal data samples?

Utilizing openly accessible data sets for evaluations as well as pub-
lishing source code alongside papers is not only good scientific standard
but also essential for others to validate presented results and carry out
comparisons. The last set of questions therefore concerns evaluation
and reproducibility (ER), in particular, employed evaluation metrics as
well as availability of data sets and source code.

ER-1: What log data sets are used for evaluating the approach?
ER-2: What evaluation metrics are employed?
ER-3: Does the evaluation consider runtime performance measure-

ments?
ER-4: What approaches are used as benchmarks?
ER-5: Are the used data sets publicly available?
ER-6: Is the source code of the approach publicly available?

All aforementioned questions were assessed for each publication
individually. The resulting feature matrix is presented in Table 2 in
the following section and serves as the basis for our analyses and
discussions.

4. Survey results

This section provides the assessments of all reviewed publications
with respect to the features outlined in the previous section. We first
provide some general information on the meta-data of publications
before going over each reviewed feature in detail.

4.1. Bibliometrics

This section provides an overview of the distribution of publications
per year as well as their citation counts.

4.1.1. Publications per year
Deep learning for anomaly detection in log data is a relatively new

research field that has increasingly gained traction in the last years.
Accordingly, a majority of the publications in this research area have
only been published in the last two to three years. Fig. 2 shows an
overview of the publication years of all publications reviewed for this
survey. As expected, 58 out of the 62 considered publications were
published in 2019 or later. As the search for relevant literature was
carried out in the beginning of 2022, only two publications from that
year are included. However, we expect to see an even higher number
of publications in 2022 and beyond following the overall trend visible
in the plot.

9 The output layer of the neural network comprises one or more nodes with
ertain numeric values.
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Table 1
Top six most cited publications.

Citations Approach Year Authors Paper Title

963 DeepLog 2017 Du et al. (2017) DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning

227 LogRobust 2019 Zhang et al. (2019) Robust Log-Based Anomaly Detection on Unstable Log Data

209 LogAnomaly 2019 Meng et al. (2019) LogAnomaly: Unsupervised Detection of Sequential and Quantitative Anomalies in
Unstructured Logs

92 – 2018 Lu, Wei, Li, and Wang (2018) Detecting Anomaly in Big Data System Logs Using Convolutional Neural Network

53 Logsy 2020 Nedelkoski, Bogatinovski, Acker, Cardoso,
and Kao (2020)

Self-Attentive Classification-Based Anomaly Detection in Unstructured Logs

45 LogBERT 2021 Guo, Yuan, and Wu (2021) LogBERT: Log Anomaly Detection via BERT
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Fig. 2. Distribution of the number of publications per year.

4.1.2. Citations
Citation counts are a common indicator to assess the relevance and

influence of publications. We therefore state the top six publication
with the highest citation counts (according to Google Scholar) in Ta-
ble 1. As of January 2023, the paper presenting DeepLog by Du, Li,
Zheng, and Srikumar (2017) that was published in 2017 has the highest
citation count and is arguably the most influential of all reviewed
publications as they were the first to propose an approach based on
deep learning that enables detection of anomalous event sequences
in log data. Several of the subsequently published papers rely on the
groundwork of DeepLog and it is therefore fair to assume that this
paper is at least to some degree responsible for the increase of relevant
publications from 2019 and onward that is visible in Fig. 2.

Note that the publication by Yang and Agrawal (2016) predates
DeepLog (Du et al., 2017) but has a significantly lower citation count.
The main reason for this is that the paper focuses on the analysis of
tokens in single log events, a topic that received far less attention
in subsequent research than the analysis of event sequences. This
differentiation as well as assessments for all other features stated in
Section 3.2 are presented in Table 2.

4.2. Deep learning techniques

This section provides an overview of the properties of deep learning
models applied in reviewed publications.

4.2.1. Deep learning models
There are many different types of deep learning models (DL-1) that

are suitable to be used for anomaly detection in log data (Sarker,
2021a, 2021b). The most basic form of a deep learning neural network
is that of a Multi-Layer Perceptron (MLP), where all layers in the
etwork are fully connected. Due to their simplicity, their classification
ccuracies are usually outperformed by other deep learning models that
re specifically designed to capture common characteristics present in
equential data. Accordingly, they are rarely considered in the reviewed
iterature and only occur in combination with other deep learning
odels or as supplementary attention mechanisms (Li & Li, 2020;

ang, Zhang, Wang & Cao, 2021). d

6

Convolutional Neural Networks (CNN) extend upon the archi-
ecture of MLPs by inserting convolutional and max pooling layers
ithin the hidden layers. These layers enable that the neural networks

apture more abstract features of the input data and at the same time
educe the input dimensions. This has proven especially effective when
lassifying 2-dimensional input data from images, where features such
s lines are learned independent from their exact location in the image.
his functionality is transferred to log data by arranging the log keys
ithin a matrix so that the relationships between events, i.e., their

emporal dependencies, are captured by the network (Lu et al., 2018).
here also exist several approaches that rely on specific types of CNNs,
uch as temporal convolutional networks (TCN) that are specifically
esigned to process time-series and capture their short- and long-term
ependencies through dilated causal convolutions (Wang et al., 2022;
hang, Li, et al., 2021).

As visible in Table 2, Recurrent Neural Networks (RNN) are the
ost commonly used neural network architectures in the surveyed

iterature, with 36 out of 62 reviewed approaches leveraging RNNs for
nomaly detection. The main reason for this is that the architecture of
NNs leverages feedback mechanisms that retain their states over time
nd thus directly enable learning of sequential event execution patterns
n input data, which are the key identifiers for anomalies in log data
ets that are commonly used in evaluations (cf. Section 4.5). Several
ifferent types of RNNs have successfully been applied for this purpose.
ne of the most widespread architectures are Long Short-Term Memory

LSTM) RNNs that are developed to enable long-time storage of states
nd comprise cells with input gates, output gates, and forget gates. A
ajority of the approaches leveraging LSTM RNNs train the network
ith sequences of event occurrences (or modified and enriched versions

hereof) and subsequently disclose unusual sequential patterns in test
ata as anomalies (Du et al., 2017). Some approaches make use of Bi-
STM RNNs, which are basically two independent LSTM RNNs that
ork in parallel and process sequences in opposite directions, i.e., while
ne LSTM RNN processes the input sequences as usual from the first
o the last element, the other LSTM RNN processes sequence elements
tarting from the last entry and predicts elements that chronologically
recede them. Experiments suggest that Bi-LSTM RNNs outperform
STM RNNs (Farzad & Gulliver, 2019; Li et al., 2020; Ott et al., 2021;
un et al., 2020; Syngal et al., 2021; Yu et al., 2021; Zhang, Dai, et al.,
021; Zhang et al., 2019). Another popular choice for RNNs are Gated
ecurrent Units (GRU) that simplify the cell architecture as they only
ely on update and reset gates. One of the main benefits of GRUs is that
hey are computationally more efficient than LSTM RNNs, which is a
elevant aspect for use cases focusing on edge devices (Farzad, 2020;
arzad & Gulliver, 2019; Gu et al., 2021; Studiawan & Sohel, 2021;
undqvist et al., 2020; Wang, Chen, et al., 2021; Xie et al., 2020; Yang
Agrawal, 2016; Yang et al., 2021).
While aforementioned deep learning models are primarily used

or classification problems across different research fields, there are
lso models that are specifically designed to operate in unsupervised
anner and are thus a natural choice for anomaly detection. One of

hem are Autoencoders (AE), which first create a code from the input

ata using an encoder and then try to approximate the input from the
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Table 2
Survey results. DL-1: Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Autoencoder (AE), Generative Adversarial Network
(GAN), Transformer (TF), Attention mechanism (AT), Graph Neural Network (GNN), Evolving Granular Neural Network (EGNN); DL-2: Cross-Entropy (CE), Hyper-Sphere (HS),
Mean Squared Error (MSE), Kullback–Leibler Divergence (KL), Marginal Likelihood (ML), Custom Loss Function (CF), Adversarial Training (AT), Not Available (NA); DL-3: Online
(ON), Offline (OFF); DL-4: Supervised (SUP), Semi-supervised (SEMI), Unsupervised (UN); PP-1: Log key (KEY), Token (TOK), Combination (COM); PP-2: Token Sequence (TS),
Token Count (TC), Event Sequence (ES), Event Count (EC), Parameter (PA), Event Interval Time (EI); PP-3: Event ID sequence (ID), Count Vector (CV), Statistical Feature Vector
(FV), Semantic Vector (SV), Positional Embedding (PE), One-Hot Encoding (OH), Embedding Layer/Matrix (EL), Deep Encoded Embedding (DE), Parameter Vector (PV), Time
Embedding (TE), Graph (G), Transfer Matrix (TM); AD-1: Outlier (OUT), Sequential (SEQ), Frequency (FREQ), Statistical (STAT); AD-2: Binary Classification (BIN), Input Vector
Transformations (TRA), Reconstruction Error (RE), Multi-class Classification (MC), Probability Distribution (PRD), Numeric Vector (VEC); AD-3: Label (LAB), Threshold (THR),
Highest Probabilities (TOP).

Approach DL-1 DL-2 DL-3 DL-4 PP-1 PP-2 PP-3 AD-1 AD-2 AD-3 ER-6

Baril, Coustié, Mothe, and Teste (2020) (NoTIL) RNN CE OFF SEMI KEY ES, EC CV FREQ VEC THR NO
Bursic, Cuculo, and D’Amelio (2019) RNN, AE MSE OFF UN TOK PA, TS DE OUT RE THR NO
Catillo, Pecchia, and Villano (2022) (AutoLog) AE MSE ON SEMI COM STAT, TC FV FREQ RE THR YES
Cheansunan and Phunchongharn (2019) CNN NA OFF SEMI KEY ES EL SEQ PRD TOP NO
Chen, and Xiao and Jin (2021) RNN, CNN NA OFF SEMI KEY ES, EC SV, CV SEQ, FREQ VEC, PRD TOP NO
Chen, Zhang, et al. (2020) (LogTransfer) RNN, CNN NA OFF SUP KEY ES SV SEQ BIN LAB YES
Decker, Leite, Viola, and Bonacorsi (2020) EGNN CF OFF SUP KEY EC, STAT FV FREQ MC THR, LAB NO
Du et al. (2017) (DeepLog) RNN CE, MSE ON SEMI KEY ES, PA, EI PV, OH SEQ VEC, PRD THR, TOP RE
Du, Zhao, Xu, Han, and Zhang (2021) (LogAttention) TF, AM NA OFF SUP KEY ES SV SEQ BIN LAB NO
Farzad and Gulliver (2019) RNN, AE CE OFF SUP TOK TS EL SEQ BIN LAB NO
Farzad (2020) RNN, AE, CNN, GAN CE OFF SUP TOK TS EL OUT BIN LAB NO
Farzad and Gulliver (2021) RNN CE OFF SUP TOK TS EL OUT BIN LAB NO
Gu et al. (2021) RNN, AM CE OFF SEMI KEY ES SV SEQ PRD TOP NO
Guo, Wu, Zhu, Yang, and Han (2021) (FLOGCNN) CNN CE OFF SUP COM TS SV SEQ BIN LAB NO
Guo, Yuan, and Wu (2021) (LogBERT) TF, AM CE, HS OFF SEMI KEY ES PE, EL SEQ PRD TOP YES
Guo, Lin, et al. (2021) (TransLog) TF, AM CE OFF SUP KEY ES SV SEQ BIN LAB NO
Han and Yuan (2021) (LogTAD) RNN, GAN HS, CF, AT OFF UN KEY ES SV SEQ TRA THR YES
Hashemi and Mäntylä (2021) (OneLog) CNN CE OFF SUP TOK ES DE SEQ BIN LAB YES
Hirakawa, Tominaga, and Nakatoh (2020) CNN, TF CF OFF UN TOK ES SV OUT BIN THR NO
Huang et al. (2020) (HitAnomaly) TF, AM CE OFF SUP KEY ES, PA SV, PV SEQ BIN LAB NO
Le and Zhang (2021) (NeuralLog) TF CE OFF SUP TOK ES SV, PE SEQ BIN LAB YES
Li and Li (2020) (LogSpy) CNN, MLP, AM CE OFF SUP KEY STAT DE, EL STAT BIN LAB NO
Li, Chen, Jing, He, and Yu (2020) (SwissLog) RNN, AM CE OFF SUP KEY ES, EI SV, TE STAT, SEQ BIN LAB NO
Liu et al. (2021) (LogNADS) RNN MSE OFF SUP KEY ES, PA SV, PV SEQ BIN LAB NO
Lu et al. (2018) CNN NA OFF SUP KEY ES EL SEQ BIN LAB NO
Lv, Luktarhan, and Chen (2021) (ConAnomaly) RNN NA OFF SUP KEY ES SV SEQ BIN THR NO
Meng et al. (2019) (LogAnomaly) RNN NA OFF SEMI KEY ES, EC SV, CV SEQ, FREQ VEC, PRD TOP RE
Nedelkoski et al. (2020) (Logsy) TF HS OFF UN TOK TS PE, EL OUT TRA THR RE
Otomo, Kobayashi, Fukuda, and Esaki (2019) AE KL, ML, CF OFF SEMI KEY ES, EC CV, OH FREQ TRA THR NO
Ott, Bogatinovski, Acker, Nedelkoski, and Kao (2021) RNN CE, MSE OFF SEMI KEY ES SV SEQ VEC, PRD THR, TOP NO
Patil, Wadekar, Gupta, Vijan, and Kazi (2019) RNN CE OFF SUP KEY ES OH SEQ BIN LAB NO
Qian, Ying, and Wang (2020) (VeLog) AE CF ON SEMI KEY ES, EC ID, CV SEQ, FREQ RE THR NO
Studiawan and Sohel (2021) AE MSE OFF SEMI KEY EC, STAT, EI, TC FV STAT, FREQ RE THR NO
Studiawan, Sohel, and Payne (2020) (pylogsentiment) RNN CE OFF SUP TOK TS SV OUT BIN LAB YES
Sun et al. (2020) (AllContext) RNN, AM CE OFF SUP KEY ES SV OUT, SEQ BIN, MC LAB NO
Sundqvist, Bhuyan, Forsman, and Elmroth (2020) (BoostLog) RNN NA ON SEMI KEY ES ID SEQ PRD THR NO
Syngal, Verma, Karthik, Katyal, and Ghosh (2021) RNN, AE CE OFF SUP TOK ES, EC CV, OH SEQ, FREQ RE THR NO
Wadekar, Gupta, Vijan, and Kazi (2019) AE CE, KL, ML OFF UN KEY ES OH SEQ BIN THR NO
Wan, Liu, Wang, and Wen (2021) (GLAD-PAW) GNN CE OFF UN KEY ES G SEQ PRD TOP NO
Wang, Xu, and Guo (2018) RNN NA OFF SUP TOK TS SV OUT BIN LAB NO
Wang, Zhang, Wang and Cao (2021) (CATLog) AE, MLP, TF CE, CF OFF SUP KEY ES, TC SV, DE, CV SEQ, FREQ BIN LAB NO
Wang, Tian, Fang, Chen, and Qin (2022) (LightLog) CNN CE OFF SUP KEY ES SV SEQ BIN LAB YES
Wang, Chen, et al. (2021) (OC4Seq) RNN HS OFF UN KEY ES EL SEQ TRA THR YES
Wibisono and Kistijantoro (2019) TF, AM NA OFF SEMI KEY ES OH SEQ PRD TOP NO
Wittkopp et al. (2021) (A2Log) TF, AM CF OFF UN TOK TS SV OUT BIN, TRA THR NO
Xi, Xin, Luo, Shang, and Tang (2021) RNN, AM CE OFF SEMI KEY ES SV SEQ PRD TOP NO
Xia, Bai, Yin, Li, and Xu (2021) (LogGAN) RNN, GAN AT ON SEMI KEY ES OH SEQ PRD THR NO
Xiao, Huang, and Wu (2019) RNN, CNN CE OFF SEMI KEY ES EL SEQ PRD TOP NO
Xie, Ji, and Cheng (2020) (ATT-GRU) RNN, AM MSE OFF SEMI KEY ES, PA, EI PV, EL SEQ VEC, PRD THR, TOP NO
Yang and Agrawal (2016) RNN CE OFF SEMI TOK TS SV OUT VEC THR NO
Yang, Qu, Gao, Qian, and Tang (2019) (nLSALog) RNN, AM CE OFF SEMI KEY ES EL SEQ PRD TOP NO
Yang et al. (2021) (PLELog) RNN NA OFF SEMI KEY ES SV SEQ BIN LAB NO
Yen, Moh, and Moh (2019) (CausalConvLSTM) RNN, CNN CE ON SEMI KEY ES OH SEQ PRD TOP NO
Yin et al. (2020) (LogC) RNN CE OFF SEMI KEY ES, PA OH SEQ PRD TOP NO
Yu et al. (2021) RNN CE OFF SEMI KEY ES, EC SV, ID, CV SEQ, FREQ PRD TOP NO
Zhang et al. (2019) (LogRobust) RNN, AM CE OFF SUP KEY ES SV SEQ BIN LAB RE
Zhang, Li, et al. (2021) (LogAttn) AE, CNN, AM CE OFF SEMI TOK ES, EC SV, CV SEQ, FREQ RE THR NO
Zhang, Wang, Zhang, Zhang, and Han (2021) (LSADNET) CNN, TF CE ON SEMI KEY ES, STAT SV, TM STAT, SEQ PRD TOP NO
Zhang, Dai, Han, and Zheng (2021) (SentiLog) RNN NA OFF SUP TOK TS SV OUT BIN LAB NO
Zhao, Niu, et al. (2021) (Trine) TF, GAN NA OFF SEMI TOK ES SV, DE, PE SEQ BIN LAB NO
Zhou et al. (2020) (LogSayer) RNN, CNN NA ON SUP KEY EC, STAT FV STAT BIN LAB NO
Zhu, Li, Gu, and Wang (2020) (LogNL) RNN NA OFF SEMI KEY ES, PA, EI SV, PV SEQ VEC, PRD THR NO
code using a decoder, thereby avoiding the need for labeled input data.
The main idea is that through this process the neural network learns
the main features from the input but neglects the noise in the data,
similar to dimension reduction techniques such as principal component
analysis (PCA). Any input data that is fed into an already trained
network and yields a high reconstruction error is then considered as
anomalous. Besides the standard model for Autoencoders, there are
also several related types, such as Variational Autoencoders (VAE) that
operate on statistical distributions (Qian et al., 2020; Wadekar et al.,
2019; Wang, Zhang, Wang & Cao, 2021), Conditional Variational Au-
toencoders (CVAE) that add conditional information such as event types
to the training (Otomo et al., 2019), and Convolutional Autoencoder
(CAE) that leverage the advantages of CNNs regarding learning of
location-independent features (Wadekar et al., 2019).

Generative Adversarial Networks (GAN) are another approach
for unsupervised deep learning. They actually consist of two separate
components that compete with each other: a generator that produces
new data that resembles the input data, and a discriminator that esti-
mates the probability that some data stems from the input data, which
is used to improve the generator. Existing approaches use different
7

models to construct GANs, including LSTM RNNs (Han & Yuan, 2021;
Xia et al., 2021), CNNs in combination with GRUs (Farzad, 2020),
and Transformers (Wang, Zhang, Wang & Cao, 2021; Zhao, Niu, et al.,
2021).

Transformers (TF) make use of so-called self-attention mecha-
nisms to embed data instances into a vector space, where similar
instances should be closer to each other than dissimilar ones (Du et al.,
2021; Guo, Yuan, & Wu, 2021; Nedelkoski et al., 2020). The goal of
Transformers is to assign weights to specific inputs according to the
context of their occurrence, such as words in sentences. Accordingly,
Transformers have been particularly successful in the area of natural
language processing (NLP). Attention mechanisms (AT) do not just
appear in Transformers, but are also frequently used to improve classi-
fication and detection in other deep neural networks such as RNNs by
weighting relevant inputs higher. This effect is particularly strong when
long sequences are ingested by RNNs (Zhang, Li, et al., 2021). Attention
mechanisms are usually realized as trainable networks such as MLPs (Li
& Li, 2020). In order to avoid confusions with the Transformer model,
we state these additional attention mechanisms explicitly in Table 2.
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Table 3
Definitions of common training loss functions.

Name Description Equation

Cross-Entropy Loss between a ground truth label 𝑦 and the predicted label �̂�. 𝐻(𝑦, �̂�) = −
∑𝑁

𝑗=1 𝑦𝑗 𝑙𝑜𝑔
(

�̂�𝑗
)

Hyper-Sphere Objective Function Distance between embedding vector 𝑦 and hyper-sphere center 𝑐. 𝐿𝐻𝑆 = 1
𝑁

∑𝑁
𝑗=1

‖

‖

‖

𝑦𝑗 − 𝑐‖‖
‖

2

Mean Squared Error Loss between a ground truth label 𝑦 and the predicted label �̂�. 𝐿𝑀𝑆𝐸 (𝑦, �̂�) =
1
𝑁

∑𝑁
𝑗=1

(

𝑦𝑗 − �̂�𝑗
)2

Kullback–Leibler Divergence Statistical divergence between probability distributions 𝑃 and 𝑄. 𝐾𝐿(𝑃∥𝑄) =
∑

𝑥∈ 𝑃 (𝑥)𝑙𝑜𝑔
(

𝑃 (𝑥)
𝑄(𝑥)

)

Adversarial Training Function Loss for vector 𝑦 and prediction �̂� with generator 𝐺 and discriminator 𝐷.
𝐿𝐴𝑇 =min

𝐺
max
𝐷

(E (𝑙𝑜𝑔 (𝐷(𝐺(�̂�)))) +
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Wan et al. (2021) are the only authors to utilize Graph Neural
Networks (GNN). While neural networks typically ingest ordered data,
e.g., CNNs rely on 2-dimensional input data and RNNs require se-
quences of observations, GNNs are designed to ingest graph inputs,
i.e., sets of vertices and edges. One possibility to transform log data into
graphs is to generate session graphs, with vertices representing events
and edges their sequential executions. Another less commonly applied
type of deep learning model is the Evolving Granular Neural Network
EGNN), a fuzzy inference system that is gradually constructed from
nline data streams (Decker et al., 2020).

Our survey shows that many of the reviewed approaches rely on
nly one type of deep learning model. However, some authors also use
ombinations of different models. For example, Wang, Zhang, Wang
nd Cao (2021) propose to use a MLP to combine the output of a VAE
ith that of a Transformer trained with adversarial learning.

.2.2. Training loss function
Loss functions (DL-2) are essential for training of deep neural net-

orks as they quantify the difference between the output of the neu-
al network and the expected result (Zhang & Sabuncu, 2018). The
ost common loss function in the reviewed publications is the Cross-
ntropy (CE), in particular, the categorical cross-entropy for multi-
lass prediction (Du et al., 2017; Syngal et al., 2021) or binary cross-
ntropy that only differentiates between the normal and anomalous
lass (Wang et al., 2022). Other common loss functions include the
yper-Sphere Objective Function (HS) where the distance to the

enter of a hyper-sphere represents the anomaly score (Guo, Yuan,
Wu, 2021; Han & Yuan, 2021; Nedelkoski et al., 2020; Wang,

hen, et al., 2021), the Mean Squared Error (MSE) that is used
or regression (Bursic et al., 2019; Catillo et al., 2022; Du et al.,
017; Liu et al., 2021; Ott et al., 2021; Studiawan & Sohel, 2021;
ie et al., 2020), and the Kullback–Leibler Divergence (KL) and its
xtension Marginal Likelihood (ML) that are useful to measure loss in
robability distributions (Otomo et al., 2019; Wadekar et al., 2019).

Some of the presented approaches are trained with Custom Loss
unctions (CF), including combinations of CE and HS (Wittkopp et al.,
021). Some authors also define objective functions specifically for Ad-
ersarial Training (AT) of GANs (Han & Yuan, 2021; Xia et al., 2021).
able 3 summarizes the main loss functions. Out of all publications,
4 do not state the loss function and are therefore marked as Not
vailable (NA).

.2.3. Operation mode
When applying anomaly detection in real world scenarios, not all

og data is available at any time; instead, events are generated as
continuous stream and should be analyzed only at their time of

ccurrence in order to enable (close to) real-time detection. Thereby,
he structural integrity and statistical properties of the generated logs
ary over time, e.g. the overall system utilization is not stationary
s user interactions and the technological environment are subject to
hange. In addition, log templates change or new log events occur when
pplications generating these logs are modified (Zhang et al., 2019).

To keep up with these changes in an automated way, algorithms
eed to adopt online or incremental learning (DL-3), i.e., ingest input
8

ata with linear time complexity so that data sets are processed in a
ingle pass where each data instance is only handled once. While it is
sually always possible to carry out detection in an online fashion when
rained models are considered static, it is significantly more challenging
o develop algorithms that support online learning and dynamically
pdate their models to adapt to new events or patterns by incorporating
hem into the baseline for detection (Cui, Ahmad, & Hawkins, 2016;
adsell, Rao, Rusu, & Pascanu, 2020). As continuous learning is still
n open problem, we mark all approaches that enable dynamic model
pdates at least to some degree as online (ON) and all other approaches
ith offline training phases as offline (OFF) in Table 2.

The reviewed approaches addressed dynamic model adaptation in
ultiple ways. Du et al. (2017) suggest to update the weights of

heir neural network when false positives are identified during the
etection to reflect the correct event probability distributions without
he need to re-train from scratch. Meng et al. (2019) argue that such a
anual feedback loop is infeasible in practice and therefore resort to

e-training where new event types are mapped to existing ones. Yen
t al. (2019) automatically re-train their neural network on batches
f new log data when false positive rates exceed a certain threshold.
owever, calculating the false positive rates relies on labeled data and

hus does not remove the human from the loop. A promising solution
o aforementioned problems is presented by Decker et al. (2020), who
mploy an evolving classifier that is specifically designed to handle
nstable data streams and could thus enable continuous learning.

In general, both online and offline models can work in supervised
SUP) as well as unsupervised (UN) fashion (DL-4). However, we
oticed that almost all supervised learning approaches in the reviewed
ublications opt for an offline training phase. This is reasonable as
he label information required for supervised learning relies on manual
nalysis or validation and therefore can only be generated forensically
or delimited data sets, but not for data streams.

We also made the observation that many reviewed approaches
laim to enable unsupervised learning, but are in fact operated in
emi-supervised (SEMI) fashion as they usually assume that training
akes place only on normal data that is free of anomalies (Chen,
nd Xiao & Jin, 2021). The main problem is that anomalies that
re present in training data would incorrectly change the weights
f the neural networks and thus deteriorate their detection in the
ubsequent detection phase. Accordingly, only deep learning models
hat are designed for unsupervised learning are capable of handling
nomalies in training data, for example, the approach based on a CVAE
odel presented by Otomo et al. (2019). Note that neural network

rchitectures that would support unsupervised learning may also be
pplied for semi-supervised detection and are therefore not necessarily
arked as unsupervised.

.3. Log data preparation

This section outlines all steps necessary to prepare raw and textual
og data for deep learning. This includes grouping of events into win-
ows or sessions, tokenization and log parsing, extraction of features
rom the logs, as well as transformation of these features into vector
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Fig. 3. Different stages of data preparation to transform raw log data into numeric vectors.
epresentations that are suitable as input to neural networks. Fig. 3
rovides an overview of these data preparation methods used in the
eviewed literature and illustrates them on the sample log lines L1–L8.
n the following sections, we discuss all stated methods in detail.

.3.1. Pre-processing
As log data is generally unstructured it is necessary to pre-process

hem in some way before feeding them into deep learning systems (PP-
). Our survey shows that there are two main approaches to handle
nstructured data. The most common approach is to leverage parsers,
hich are usually referred to as log keys (KEY), to extract unique
vent identifiers for each line as well as event parameter values as
escribed in Section 2.1.2. Thereby, authors usually re-use existing log
eys for well-known data sets or create the keys using state-of-the-
rt approaches for parser generation, such as Drain (He, Zhu, Zheng,

Lyu, 2017) or Spell (Du & Li, 2016). Typically, each line matches
xactly one key; it is thus easy to assign a unique event type identifier
o each log line during event mapping. For example, in Fig. 3 line L1 is
apped to event type identifier E1 as it matches the corresponding log

ey. Moreover, the figure also shows that parsing allows to extract all
arameters from log events, in particular, the time stamp and identifiers
or packet responder and file block are extracted from L1 and stored in
list.

An alternative to parsing are token-based (TOK) strategies that split
og messages into lists of words, for example, by splitting them at white
paces. It is then common to clean the data by transforming all letters
o lowercase and removing special characters and stop words before
btaining the final word vectors. While such approaches draw less
emantic information from the single tokens, they have the advantage
f being more flexible as they rely on generally applicable heuristics
ather than pre-defined parsers and are therefore widely applicable.
ome approaches make use of a combination (COM) of parsing and
oken-based pre-processing strategies, in particular, by generating to-
en vectors from parsed events rather than raw log lines (Catillo et al.,
022; Guo, Wu, et al., 2021; Le & Zhang, 2021).

.3.2. Event grouping
As pointed out in Section 2.1.3, simple outlier detection does not

equire any grouping of logs since single unusual events are regarded
9

as anomalies independent from the context in which they occur in.
However, deep learning is most often applied to disclose unusual
patterns of multiple log events, such as changes of event sequences or
temporal log correlations. For these cases it is necessary to logically
organize events into groups that are then analyzed individually or in
relation to each other.

We illustrate common event grouping strategies in the top right
of Fig. 3. Grouping into time windows is almost always feasible as
log events are generally produced with a time stamp that documents
their time of generation (Landauer, Skopik, Wurzenberger, & Rauber,
2020). Since time stamps commonly occur in the beginning of log lines
and are thus relatively easy to extract, it is not necessary to parse
the remainder of the usually more complex log messages. There are
two main strategies for time-based grouping (He et al., 2016). First,
sliding time windows are windows of a specific duration that are
shifted across the log data with a fixed step size that is generally
smaller and a whole number divisor of the window size. For every step
where the time window is moved all logs with a time stamp within
the current start and end time of the window are allocated to the
same group, where each log line may appear in multiple groups as
time windows overlap. For the sample logs in Fig. 3 we assume time
window of 2 hours starting at 20:00:00 and a step size of 30 minutes.
As visible in the figure, lines L5, L6, and L7 are contained in both 𝑇 𝑏
and 𝑇 𝑐. Second, fixed time windows are special cases of sliding time
windows where the step size is set to the same value as the window
size. While this strategy results in a less fine-grained view on the data,
the advantage is that each log event will only be allocated to exactly
one time window, which makes subsequent computations such as time-
series analysis easier. The log events in Fig. 3 are exemplarily grouped
into fixed time windows of 2 hours, yielding 𝑇 1 containing the first set
of four lines and 𝑇 2 containing the subsequent set of four lines. It must
be noted that grouping based on sliding or fixed windows may also be
carried out by numbers of lines rather than time so that each group
of lines has the same size. While this avoids the need to process time
stamps and ensures that the group sizes are fixed (e.g., there cannot be
any empty groups), it is more difficult to consider event frequencies as
time-series as the resulting windows represent varying time spans.

An entirely different grouping strategy are session windows that
rely on an event parameter that acts as an identifier for a specific task
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or process where the event originated from. Grouping log events by
these session identifiers allows to extract event sequences that correctly
depict underlying program workflows even when multiple sessions are
carried out in parallel on the monitored system. Unfortunately, not all
types of log data come with such an identifier for sessions. In the sample
logs depicted in Fig. 3 the file block identifier (e.g., blk_388) acts as a
session identifier and thus allows us to exemplarily extract three event
sequences.

4.3.3. Feature extraction
The parsing- and token-based pre-processing strategies described

in Section 4.3.1 enable the extraction of structured features from the
otherwise unstructured logs (PP-2). Some of these features are directly
derived from pre-processing logs, e.g., the Token Sequence (TS) may
be used without any further modifications for analyzing each log line
as a sentence of words. On the other hand, Token Counts (TC) require
n additional step of computation where the tokens in each line are
ompared and counted, including advanced weighting techniques for
ach token such as term frequency-inverse document frequency (TF-
DF) that estimates token relevance based on token occurrences across
ll observed log lines.

Considering the outcome of the event mapping step it is simple to
xtract Event Sequences (ES), i.e., sequences of event type identifiers
hat are usually separated by fixed, sliding, or session windows (cf.
ection 4.3.2). For example, Fig. 3 shows that the event sequence
or file block blk_388 is [𝐸1, 𝐸1, 𝐸2, 𝐸1] corresponding to the event

identifiers for the respective log keys matching the lines L1–L4. Event
ounts (EC) are vectors of length 𝑑, where the 𝑖th element of the

vector depicts the number of occurrences of the 𝑖th log key and 𝑑 is
the total number of available log keys. The example in Fig. 3 shows
the event count vector for time window 𝑇 1 as [3, 1, 0, 0], indicating
that three log lines corresponding to the first log key (E1) appeared
in 𝑇 1, in particular, the lines L1, L2, and L4. Besides frequencies,
many other statistical properties (STAT) may be computed from event
occurrences, such as the percentage of seasonal logs (Zhou et al., 2020),
the lengths of log messages (Studiawan & Sohel, 2021), log activity
rates (Decker et al., 2020), entropy-based scores for chunks of log
lines (Catillo et al., 2022), or the presence of sudden bursts in event
occurrences (Zhou et al., 2020).

Parameters (PA) of log events are extracted as lists of values. Since
the semantic meaning of each parameter is known after parsing, the val-
ues in each vector can be analyzed with methods that are appropriate
for the respective value types, e.g., numeric or categorical. One special
parameter of log events is the time stamp as it allows to put event
occurrences into chronological order and infer dynamic dependencies.
Accordingly, Event Interval Times (EI), i.e., inter-arrival times of log
lines that belong to the same event type, are a frequently extracted
feature for anomaly detection.

4.3.4. Feature representation
The extracted features described in the previous section comprise

numeric or categorical vectors and are suitable to be consumed by neu-
ral networks. For example, event sequences are represented as Event ID
sequence vectors (ID), i.e., chronologically ordered sequences of log
key identifiers, and fed into RNNs to learn dependencies of event occur-
rences and disclose unusual sequence patterns as anomalies (Sundqvist
et al., 2020). Event counts are represented as ordered Count Vectors
(CV) and are also similarly used as input for RNNs (Baril et al.,
2020). Event statistics are another type of input that do not require
any specific processing other than representing them in a Statistical
Feature Vector (FV) where the position of each element in the vector
corresponds to one particular feature.

While it is possible to directly use the extracted features, most of
the approaches presented in the reviewed publications in fact rely on

combinations or otherwise transformed vector representations of the 2

10
original feature vectors (PP-3). Thereby, the most common representa-
tion is that of a Semantic Vector (SV). Within the field of NLP it is com-
mon practice to transform words of a sentence into so called semantic
vectors that encode context-based semantics (e.g. Word2Vec (Mikolov,
Chen, Corrado, & Dean, 2013), BERT (Devlin, Chang, Lee, & Toutanova,
2018), or GloVe (Pennington, Socher, & Manning, 2014)) or language
statistics (e.g. TF-IDF (Manning, Raghavan, & Schütze, 2010)). Since
each log line comprises sequences of tokens analogous to words in a
sentence, it stands to reason to apply methods from natural language
processing on the token sequences. Similarly, a sequence of multiple
subsequent events can be regarded as a sentence, where each unique
log key represents a word. Semantic encoding is typically achieved by
training deep neural methods on a specific log file or by relying on pre-
trained models. Semantic vectors are sometimes used in combination
with Positional Embedding (PE), where elements (typically tokens)
are encoded based on their relative positions in a sequence. To add
the positional information to the encoded log messages authors usually
use sine and cosine functions for even and odd token indices respec-
tively (Le & Zhang, 2021; Nedelkoski et al., 2020; Zhao, Niu, et al.,
2021).

One-Hot Encoding (OH) is one of the most common techniques to
andle categorical data and is therefore frequently applied on event
ypes (as a finite number of log keys is defined in the parser) or token
alues. Formally, the one-hot encoding of a value 𝑖 from an ordered
ist of 𝑑 values is a vector of length 𝑑 where the 𝑖th element is 1
nd all others are 0 (Du et al., 2017). While most authors use one-
ot encoded data directly as an input to neural networks, it is also
ossible to combine it with other features such as count vectors so that
he applied neural network is capable of discerning the input and learn
eparate models for different log keys (Otomo et al., 2019).

Embedding Layers/Matrices (EL) are typically used to resolve the
roblems with respect to sparsity of high-dimensional input data such
s one-hot encoded event types when a large number of log keys are
equired to parse the logs (Wang, Chen, et al., 2021; Yang et al.,
019). They are usually randomly initialized parameters which are
rained alongside the classification models to create optimal vector
ncodings for log messages (Lu et al., 2018). The vector encodings
re usually arranged in a matrix so that the respective vector for a
articular log key is obtained by multiplying the matrix with a one-
ot encoded log key vector. The main difference to semantic vectors is
hat embedding layers/matrices are generally not trained towards NLP
bjectives, i.e., they do not aim to learn the semantics of words like
ord2Vec; instead, embedding layers/matrices are only trained to min-

mize the loss function of the classification network. Some authors also
se custom embedding models based on deep learning; we refer to their
utput as Deep Encoded Embeddings (DE). This includes a combina-
ion of character-, event- and sequence-based embeddings (Hashemi &
äntylä, 2021), attention mechanisms using MLPs and CNNs (Li & Li,

020), and token counts with label information fed into VAEs (Wang,
hang, Wang & Cao, 2021).

Other than aforementioned methods that operate with event types
nd mostly use tokens only for encoding these events in vector format,
pproaches that rely on Parameter Vectors (PV) directly use the actual
alues extracted from the parsed log messages. Thereby, extracted
arameters that are numeric may be used for multi-variate time-series
nalysis with RNNs (Du et al., 2017; Xie et al., 2020; Zhu et al., 2020),
hile categorical values could be one-hot encoded and vectorized with
ord embedding methods (Huang et al., 2020). Either way, as different

og events have varying numbers of parameters with different semantic
eaning, it is usually necessary to analyze the parameters of each event

ype on their own (Du et al., 2017; Xie et al., 2020; Zhu et al., 2020).
he time stamp of log events is a special parameter as it allows to put
ther parameters in temporal context, which is required for time-series
nalysis. However, the time stamps themselves may be used for Time
mbedding (TE) and serve as input to neural networks (Bursic et al.,

019). For this purpose, Li et al. (2020) generate vectors for sequences
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of time differences between event occurrences by applying soft one-hot
encoding.

While aforementioned representations are used in different vari-
ations in several publications, Graphs (G) are an entirely different
approach that is only employed by Wan et al. (2021). The key idea
is to transform event sequences into session graphs and then apply
neural networks that are specifically designed for these data structures.
Another less common strategy for encoding dependencies between log
messages is the so-called Transfer Matrix (TM). In particular, the 𝑑×𝑑-
imensional matrix encodes the probabilities that any of the 𝑑 log keys
ollows another (Zhang, Wang, et al., 2021).

.4. Anomaly detection techniques

The previous sections described methods to prepare the input log
ata for ingestion by neural networks. However, in many cases it is
on-trivial to retrieve the information whether a data sample presented
o the neural network is anomalous or not as there are no dedicated
utput nodes for anomalies that are not known beforehand. This section
herefore outlines the anomaly detection techniques applied by the
eviewed approaches. First, we state different types of anomalies that
re commonly targeted by approaches. Second, we investigate how the
etection or classification result is retrieved from the network output.
inally, we state different decision criteria that are used to differentiate
ormal from anomalous samples based on these resulting measures.

.4.1. Anomaly types
The reviewed approaches address different types of anomalies as

utlined in Section 2.1.3 (AD-1). Outliers (OUT) are single log events
hat do not fit to the overall structure of the data set. Most com-
only, outlier events are detected based on their unusual parameter

alues (Hirakawa et al., 2020), token sequences (Wang et al., 2018;
ittkopp et al., 2021), or occurrence times (Bursic et al., 2019).

omparatively few approaches consider outliers since the majority
f reviewed approaches focus on collective anomalies, in particular,
nvolving sequences of events.

Sequential (SEQ) anomalies are detected when execution paths
hange, i.e., the applications that generate logs execute events differ-
ntly than before. This could result in additional, missing, or differently
rdered events within otherwise normal event sequences as well as
ompletely new sequences that could even involve previously unseen
vent types. A common method to detect these anomalies is to check
hether a specific event type in a sequence of events is expected to
ccur given all the events that occur before or thereafter.

While the detection of sequential anomalies inherently assumes
hat events occur as ordered sequences, frequency (FREQ) anomalies
nly consider the number of event occurrences. Nonetheless, event
requencies may be used to infer dependencies between events, for
xample, the numbers of events related to opening and closing files
hould be the same as every file will eventually be closed and needs
o be opened before doing so (Meng et al., 2019). The main idea for
etecting frequency anomalies is that changes of system behavior affect
he number of usual event occurrences that are most often counted
ithin time windows.

Some approaches also consider anomalies that base on certain quan-
itatively expressed properties of multiple log events that go beyond
vent counts, such as their inter-arrival times (Li et al., 2020) or
easonal occurrence patterns (Zhou et al., 2020). We refer to them
s statistical (STAT) anomalies, because their detection generally as-
umes that the event occurrences follow specific stable distributions
ver time. The following section describes how the output of the neural

etworks is used to determine the aforementioned types of anomalies.

11
.4.2. Network output
In general, the output of a neural network consists either of a

ingle node or multiple nodes in its final layer (AD-2). Accordingly,
he resulting value extracted from the network is a scalar or vector
f numeric values. One possibility is to consider these results as an
nomaly score that expresses to what degree the log events presented to
he network represent an anomaly or not. As these scores are generally
ifficult to interpret on their own, it is usually necessary to compare
hem with some threshold. In binary classification (BIN) this idea is
sed to estimate whether the input presented to the neural network is
ither normal or anomalous. For supervised approaches the numeric
utput can be interpreted as probabilities that the input corresponds
o either class. On the other hand, anomaly scores that are generated
y semi- or unsupervised approaches are generally not normalized,
.g., the distance between the input and the center of a hyper-spherical
luster can become arbitrarily large, and therefore need to be compared
o empirically determined thresholds. Similarly, Input vector trans-

formations (TRA) that transform the input into a new vector space
and generate clusters for normal data are capable of detecting outliers
by their large distances to cluster centers. Another related method is
to leverage the reconstruction error (RE) of Autoencoders that first
encode the input data in a lower dimensional space and then attempt
to reconstruct them to their original form. In this case, input samples
are considered anomalous if they are difficult to reconstruct, i.e., yield
a large reconstruction error, because they do not correspond to the
normal data that the network was trained on.

While aforementioned approaches pursue binary classification that
separates normal from anomalous input, there are also concepts that
are capable of differentiating between more than two classes. Multi-
class classification (MC) assigns distinct labels to specific types of
anomalies but requires supervised learning in order to capture the
patterns specific to these classes in the training phase. To resolve
this issue, it is also possible to consider event types as the target of
classification. The most common approach for this is to train the models
to predict the next log key following a sequence of observed log events.
When a softmax function is used as an activation for the output, this
prediction yields a probability distribution (PRD) with the individual
probabilities for each log key. The problem of predicting the next
log event in a sequence can also be formulated as a regression task
when events are considered as numeric vectors (VEC), in particular,
semantic or parameter vectors. Thereby, the neural network outputs a
vector representing the expected event vector instead of the respective
event type.

4.4.3. Detection method
The different strategies for obtaining the network output described

in the previous section already give a rough idea on the methods
used to differentiate normal from anomalous behavior and eventually
report anomalies (AD-3). When the network output directly corre-
sponds to a particular label (LAB), for example, as accomplished by
binary classification, it is simple to generate anomalies for all samples
that are labeled as anomalous. For all approaches that output some
kind of numeric value or anomaly score it is straightforward to use
a threshold (THR) for differentiation. This threshold is also useful to
tune the detection performance of the approach and find an acceptable
tradeoff between TPR and FPR by empirical experimentation. Another
approach is to model the anomaly scores obtained from the network as
statistical distributions. In particular, Du et al. (2017) and Xie et al.
(2020) use a Gaussian distribution to detect parameter vectors with
errors outside of specific confidence intervals as anomalous. A different
approach is proposed by Otomo et al. (2019), who apply clustering on
the reconstruction errors and detect all samples that are sufficiently far
away from the normal clusters as anomalies.

When the output of the neural network is a multi-class probability
distribution for known log keys it is common to consider the top

𝑛 log keys with the highest probabilities (TOP) as candidates for
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Fig. 4. Most common combinations of network output types and detection techniques.

classification. Thereby, an anomaly is only detected if the actual type
of the log event is not within the set of candidates. The number of
considered candidates 𝑛 regulates the tradeoff between TPR and FPR
nalogous to the aforementioned threshold. Fig. 4 shows how the
etwork output relates to the applied detection techniques. Both BIN
nd MC rely on supervised learning and are therefore able to directly
ssign labels to new input samples. All other techniques enable semi-
r unsupervised training. In particular, RE, TRA, and VEC produce
nomaly scores that are compared against thresholds, while PRD is typi-
ally compared against the top log keys with highest probabilities. Note
hat there are some exceptions to this overall pattern. For example,
he approach by Yang et al. (2021) supports semi-supervised training
hrough the use of probabilistic labels, and the approaches by Zhang
t al. (2019) and Syngal et al. (2021) are supervised despite relying on
econstruction errors.

.5. Evaluation & reproducibility

This section provides an overview of evaluations carried out in the
eviewed publications. We present a list of openly available data sets
hat are useful for evaluations and state commonly used evaluation
etrics and benchmarks. We also discuss reproducibility of evaluations
ith respect to the availability of open-source implementations.

.5.1. Data sets
Data sets are essential in scientific publications to validate the

pproach and show improvements over state-of-the-art detection rates
ER-1). Our literature review reveals that there are only few data sets
hat are commonly used when evaluating log data anomaly detection
pproaches using deep learning. Table 4 shows an overview of all data
ets used in the reviewed publications. As visible in the table, the
ast majority of evaluations rely on only four data sets (HDFS, BGL,
hunderbird, and OpenStack). In the following, we briefly describe
ach data set.

The HDFS log data set stems from the Hadoop Distributed File
System (HDFS) running on a high-performance computing cluster with
203 nodes that computes many standard MapReduce jobs. More than
24 million logs are collected over a period of two days. The data
set comprises sequences of heterogeneous log events for specific file
blocks that act as identifiers for sessions. Some of the event sequences
correspond to anomalous execution paths that are mostly related to
performance issues such as write exceptions, which were manually

labeled (Xu, Huang, Fox, Patterson, & Jordan, 2009a). The sample logs

12
shown in Fig. 3 are simplified versions of the logs from the HDFS data
set.

The BGL data set comprises more than four million log events that
were collected over more than 200 days from a BlueGene/L (BGL) su-
percomputer running at the Lawrence Livermore National Labs. The log
events were generated with a severity field that allows to separate them
into classes; however, the logs were additionally labeled manually by
system administrators. The anomalies occurring in the logs correspond
to both hardware and software problems. Other log data sets from the
same family that are also presented in the study by Oliner and Stearley
(2007) are Thunderbird and Spirit. These data sets comprise system
logs (syslog) and similarly comprise alerts related to system problems
such as disk failures. The events in both data sets include automatically
generated alert tags that can be used as labels. The HPC RAS data
set (Zheng et al., 2011) is another log data set from the same family of
supercomputers. Reliability, Availability, and Serviceability (RAS) logs
are usually used to understand the reasons for system failure. However,
this log data set does not include labels for anomalies.

The OpenStack data set was collected from an OpenStack platform
where automatic scripts continuously and randomly carry out tasks
related to handling of virtual machines, including creation, pausing,
deletion, etc. Other than aforementioned data sets that mostly comprise
randomly occurring failures, the authors of the OpenStack data set
purposefully injected anomalies at specific points in time, including
timeouts and errors. The events include instance identifiers that can
be used to identify sessions (Du et al., 2017).

Similar to the HDFS data, the Hadoop data set comprises logs
from a computing cluster that runs the MapReduce jobs WordCount
and PageRank. After an initial training phase, the authors purposefully
trigger failures on the nodes, in particular, by shutting down a machine,
disconnecting the network, and filling up the hard disk of one server.
The logs are separated into different files according to application
identifiers that act similar to session identifiers and are also used by the
authors to assign labels to anomalous program executions (Lin et al.,
2016).

Loghub (He et al., 2020) comprises several data sets that are used in
evaluations, including logs from high-performance computing systems.
The Spark data set contains logs from the distributed data processing
ngine Apache Spark running on 32 machines. The logs include normal
nd anomalous executions, but are not labeled. ZooKeeper is an-
ther Apache service used in distributed computing and configuration
anagement. Loghub also comprises logs from conventional operating

ystems. The Windows log data set was collected on a laboratory
indows 7 machine by monitoring CBS (Component Based Servicing),
hich operates on a package and update level. Similarly, the Android

data set was collected from a mobile phone in a laboratory setting. Both
data sets are not labeled and do not involve any purposefully injected
anomalies. Logs from the Linux operating system are provided in the
disk images of the Digital Corpora, where failures such as invalid
authentications occur in the data (Garfinkel et al., 2009).

When it comes to the detection of anomalous behavior, all afore-
mentioned data sets mainly provide failure events that are generated
as part of legitimate system usage. However, there are also data sets
that instead involve events generated from malicious activities and
thus enable evaluation of anomaly-based intrusion detection systems.
For example, the DFRWS 2009 data set contains system logs from
Linux devices that involve data exfiltration, unauthorized accesses, as
well as the use of backdoor software (Eoghan & Golden, 2022). The
Honeynet 2010 (Marty et al., 2022) and Honeynet 2011 (Arcas et al.,
2022) data sets comprise common log files from compromised Linux
machines that were illegitimately accessed. The Public Security Log
Sharing Site (Chuvakin, 2010) provides Linux Security Logs from
diverse sources and affected by different real-world intrusions, such
as brute-force attacks. Unfortunately, none of these security log files
come with labels for malicious events and thus authors need to generate
their own ground truths to evaluate their approaches on these data

sets (Studiawan & Sohel, 2021).
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Table 4
Common public log data sets.

Data set Use-case Labels Sessions Anomaly sources Used in evaluation

HDFS
(Xu et al., 2009b)

High-perf. comp. ✓ ✓ Failures Bursic et al. (2019), Cheansunan and Phunchongharn (2019),
Chen, and Xiao and Jin (2021), Chen, Zhang, et al. (2020),
Du et al. (2017, 2021), Gu et al. (2021), Guo, Lin, et al.
(2021), Guo, Wu, et al. (2021), Guo, Yuan, and Wu (2021),
Hashemi and Mäntylä (2021), Huang et al. (2020), Le and
Zhang (2021), Li et al. (2020), Liu et al. (2021), Lu et al.
(2018), Lv et al. (2021), Meng et al. (2019), Patil et al.
(2019), Qian et al. (2020), Sun et al. (2020), Sundqvist et al.
(2020), Wadekar et al. (2019), Wan et al. (2021), Wang,
Chen, et al. (2021), Wang et al. (2022), Wang, Zhang, Wang
and Cao (2021), Xi et al. (2021), Xia et al. (2021), Xiao et al.
(2019), Xie et al. (2020), Yang et al. (2021, 2019), Yen et al.
(2019), Yin et al. (2020), Yu et al. (2021), Zhang, Li, et al.
(2021), Zhang, Wang, et al. (2021), Zhang et al. (2019),
Zhao, Niu, et al. (2021), Zhou et al. (2020), Zhu et al. (2020)

BlueGene/L (BGL)
(Oliner & Stearley,
2007)

High-perf. comp. ✓ – Failures Catillo et al. (2022), Chen, and Xiao and Jin (2021), Du
et al. (2017, 2021), Farzad (2020), Farzad and Gulliver
(2019, 2021), Gu et al. (2021), Guo, Lin, et al. (2021), Guo,
Yuan, and Wu (2021), Han and Yuan (2021), Hashemi and
Mäntylä (2021), Hirakawa et al. (2020), Huang et al. (2020),
Le and Zhang (2021), Li et al. (2020), Liu et al. (2021), Lv
et al. (2021), Meng et al. (2019), Nedelkoski et al. (2020),
Studiawan et al. (2020), Sun et al. (2020), Wan et al.
(2021), Wang, Chen, et al. (2021), Wang et al. (2022),
Wang, Zhang, Wang and Cao (2021), Wittkopp et al. (2021),
Xi et al. (2021), Xia et al. (2021), Yang et al. (2021, 2019),
Zhang, Li, et al. (2021), Zhang, Wang, et al. (2021)

Thunderbird
(Oliner & Stearley,
2007)

High-perf. comp. ✓ – Failures Farzad (2020), Farzad and Gulliver (2019, 2021), Guo, Lin,
et al. (2021), Guo, Wu, et al. (2021), Guo, Yuan, and Wu
(2021), Han and Yuan (2021), Le and Zhang (2021),
Nedelkoski et al. (2020), Sun et al. (2020), Wang et al.
(2018), Wittkopp et al. (2021), Yin et al. (2020), Zhang, Li,
et al. (2021)

OpenStack
(Du et al., 2017)

Virtual machines ✓ ✓ Failures Baril et al. (2020), Du et al. (2017), Farzad (2020), Farzad
and Gulliver (2019, 2021), Hashemi and Mäntylä (2021),
Huang et al. (2020), Ott et al. (2021), Qian et al. (2020),
Wibisono and Kistijantoro (2019), Zhao, Niu, et al. (2021),
Zhou et al. (2020), Zhu et al. (2020)

Hadoop
(Lin, Zhang, Lou, Zhang,
& Chen, 2016)

High-perf. comp. ✓ ✓ Failures Catillo et al. (2022), Chen, Zhang, et al. (2020), Hashemi
and Mäntylä (2021), Studiawan et al. (2020)

Spirit
(Oliner & Stearley,
2007)

High-perf. comp. ✓ – Failures Le and Zhang (2021), Nedelkoski et al. (2020), Wittkopp
et al. (2021)

Digital Corpora
(Garfinkel, Farrell,
Roussev, & Dinolt,
2009)

OS logs – – Failures Studiawan and Sohel (2021), Studiawan et al. (2020)

DFRWS 2009
(Eoghan & Golden,
2022)

OS logs – – Exfiltration Studiawan and Sohel (2021), Studiawan et al. (2020)

Honeynet 2011
(Arcas, Gonzales, &
Cheng, 2022)

OS logs – – Intrusions Studiawan and Sohel (2021), Studiawan et al. (2020)

Windows
(He, Zhu, He, & Lyu,
2020)

OS logs – – – Studiawan and Sohel (2021), Studiawan et al. (2020)

Linux Security Logs
(Chuvakin, 2010)

OS logs – – Intrusions Studiawan and Sohel (2021)

(continued on next page)
13
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Table 4 (continued).

Data set Use-case Labels Sessions Anomaly sources Used in evaluation

Honeynet 2010
(Marty, Chuvakin, &
Tricaud, 2022)

OS logs – – Intrusions Studiawan et al. (2020)

Android
(He et al., 2020)

Mobile OS logs – – – Li et al. (2020)

HPC RAS
(Zheng et al., 2011)

High-perf. comp. – ✓ Failures Nedelkoski et al. (2020)

Spark
(He et al., 2020)

High-perf. comp. – – Failures Studiawan et al. (2020)

Zookeeper
(He et al., 2020)

High-perf. comp. – – Failures Studiawan et al. (2020)
m
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4.5.2. Evaluation metrics
Quantitative evaluation (ER-2) of anomaly detection approaches

typically revolves around counting the numbers of correctly detected
anomalous samples as true positives (𝑇𝑃 ), incorrectly detected non-
anomalous samples as false positives (𝐹𝑃 ), incorrectly undetected
anomalous samples as false negatives (𝐹𝑁), and correctly undetected
on-anomalous samples as true negatives (𝑇𝑁). In the most basic set-
ing where events are labeled individually and samples represent single
vents (e.g., as in the BGL data set), it is relatively straightforward to
valuate detected events with binary classification (Farzad & Gulliver,
019, 2021). Some of the reviewed papers additionally consider a
ulti-class classification problem for data sets where different types

f failures have distinct labels by computing the averages of evalua-
ion metrics over all classes (Sun et al., 2020) or plotting confusion
atrices (Decker et al., 2020).

Given that log events are sometimes aggregated with diverse meth-
ds prior to detection, it stands to reason that there are different ways
o determine whether a sample is anomalous or not, and whether it
ounts as a correct detection or not. For example, aggregation of logs
n windows could require to count detected events as true positives
s long as they are close enough to the actual anomaly in the event
equence (Baril et al., 2020; Syngal et al., 2021). Since a majority of
he reviewed papers rely on the HDFS data set where labels are only
vailable for whole event sessions rather than single events, the most
ommon method to compute aforementioned metrics relies on counting
f in-/correctly identified non-/anomalous sessions (Chen, and Xiao &
in, 2021; Du et al., 2021; Huang et al., 2020; Li & Li, 2020; Wang,
hen, et al., 2021).

Regardless of how the positive and negative samples are counted,
lmost all authors eventually evaluate their approaches using the well-
nown metrics precision (𝑃 = 𝑇𝑃

𝑇𝑃+𝐹𝑃 ), recall or true positive rate
𝑅 = 𝑇𝑃𝑅 = 𝑇𝑃

𝑇𝑃+𝐹𝑁 ), false positive rate (𝐹𝑃𝑅 = 𝐹𝑃
𝐹𝑃+𝑇𝑁 ) and F1-score

(𝐹1 = 2⋅𝑃 ⋅𝑅
𝑃+𝑅 ). Less common evaluation metrics are the accuracy (𝐴𝐶𝐶 =

𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 ) used in 15 publications as well as the area under curve

hich is computed for precision–recall-curves (Chen, Zhang, et al.,
020) and receiver operator characteristic (ROC) curves (Hirakawa
t al., 2020; Wang et al., 2018). Other metrics that are more specific to
eep learning applications are the number of model parameters (Guo,
u, et al., 2021; Wang et al., 2022) and time to train models or run the

etection (ER-3) (Cheansunan & Phunchongharn, 2019; Decker et al.,
020; Gu et al., 2021; Liu et al., 2021; Qian et al., 2020; Xie et al.,
020). Some authors also assess characteristics of their approaches
hat go beyond standard anomaly detection evaluations, for example,
hether training on combinations of multiple data sets improves the
verall performance of classification (Hashemi & Mäntylä, 2021) or
hether their approaches are robust against changes of log patterns
ver time (Hashemi & Mäntylä, 2021; Huang et al., 2020; Zhang et al.,
019).
 2
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Fig. 5. Overview of common benchmark approaches used in evaluations.

4.5.3. Benchmark approaches
Most publications compare the evaluation metrics stated in the pre-

vious section with benchmark approaches to show their improvements
over the state-of-the-art (ER-4). Fig. 5 shows the most commonly used
benchmarks in the reviewed publications. Note that we only considered
approaches that appear in at least two different publications for this
visualization.

As visible in the figure, DeepLog (Du et al., 2017) is the most com-
only used benchmark with appearances in 38 out of the 62 reviewed
ublications. DeepLog relies on LSTM RNNs to predict upcoming log
vents in sequences and thereby disclose observed events as anomalies
f they are expected to occur with low probabilities. The popularity of
eepLog for comparisons can be explained by the facts that DeepLog
as the first to detect sequential anomalies in log data using deep

earning (cf. Section 4.1.2) and that open-source re-implementations
re available online.

The second most commonly used benchmark leverages principal
omponent analysis (PCA) and relies on event counts rather than
equences. In particular, Xu et al. (2009a) create message count vectors
or event type identifiers and use PCA to transform them into subspaces
here anomalies appear as outliers that have a high distance to all
ther samples. Lou, Fu, Yang, Xu, and Li (2010) also generate message
ount vectors but use Invariant Mining to discover linear relation-

ships between log events that represent execution workflows. Event
sequences that violate previously identified invariants are declared as
anomalies.

LogCluster (Lin et al., 2016) generates vectors for log sequences
nd then clusters them using a similarity metric. The approach is
ainly designed for log filtering but can also be applied for detection

f unusual log patterns. Support vector machines (SVM) (Liang, Zhang,
iong, & Sahoo, 2007) are yet another method relying on event count
ectors. However, other than PCA and invariant mining, SVM typically
perate in supervised manner. To alleviate this issue and enable ap-
lication in semi- or unsupervised cases, authors therefore resort to
ne-class SVM (Schölkopf, Platt, Shawe-Taylor, Smola, & Williamson,

001) or Support Vector Data Description (SVDD) (Tax & Duin, 2004).
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Similar to DeepLog and contrary to aforementioned conventional

achine learning approaches, LogAnomaly (Meng et al., 2019) lever-
ages LSTM RNNs to analyze log event sequences. To this end, they pro-
pose the so-called template2Vec embedding method to extract semantic
vectors from the tokens that make up the events. LogRobust (Zhang
et al., 2019) also makes use of semantic vectors but is specifically
designed to handle unknown log events that appear as part of software
evolution.

Isolation Forest (Liu, Ting, & Zhou, 2008) is an anomaly detection
technique where the analyzed data is recursively split until a single
data instance is isolated from all other points; thereby, anomalous
points are identified as they are expected to require fewer splits until
their isolation. Logistic Regression (Bodik, Goldszmidt, Fox, Woodard,
& Andersen, 2010) is a classifier for numeric input data that works
best in linear classification cases (Studiawan & Sohel, 2021). Decision
Tree (Chen, Zheng, Lloyd, Jordan, & Brewer, 2004) on the other hand
is a supervised classification method where instances traverse a binary
search tree. Thereby, each internal node splits the data by a specific
predicate and each leaf of the tree determines the class of the instances.

Another benchmark that relies on deep learning are CNN. In partic-
ular, the approach by Lu et al. (2018) semantically encodes sequences
of event identifiers and embeds them into a matrix for convolution.
Finally, nLSAlog (Yang et al., 2019) leverages LSTM RNNs and is thus
similar to DeepLog. Out of all reviewed publications, only eight do not
involve any benchmark approach for comparison.

4.5.4. Reproducibility
Authors of scientific publications should pursue to enable repro-

ducibility of their presented results for many reasons, including the
possibility for others to validate the correctness of the approach, to
extend the algorithms with additional features, to carry out their own
experiments on other data sets, and to use the approach as benchmarks
in new publications. We consider an approach reproducible when both
the data used in the evaluation (ER-5) as well as the original source
code (ER-6) are publicly available.

As outlined in Section 4.5.1, a majority of the reviewed publica-
tions carry out their evaluations on the same few data sets that are
publicly available. Some authors also evaluate their approaches on
private data sets that are synthetically generated in testbeds (Baril
et al., 2020; Li & Li, 2020; Sundqvist et al., 2020; Wang, Chen, et al.,
2021; Wibisono & Kistijantoro, 2019; Yang & Agrawal, 2016; Zhang,
Dai, et al., 2021), collected from academic institutions (Otomo et al.,
2019; Yang et al., 2021), or obtained from industrial real-world appli-
cations (Catillo et al., 2022; Chen, Zhang, et al., 2020; Decker et al.,
2020; Syngal et al., 2021; Wittkopp et al., 2021; Yang et al., 2021;
Zhang et al., 2019). Overall, 55 out of the 62 reviewed publications
involve evaluations on at least one of the publicly available data sets
from Table 4.

While it is relatively common to evaluate approaches on public data
sets, there are unfortunately only few authors that publish implemen-
tations of their approaches alongside the papers. During our review we
were only able to find the original source code of presented approaches
from 8 publications. However, we also point out that there exist some
re-implementations of scientific approaches in the deep-loglizer toolbox
provided by Chen, Liu, et al. (2021). We mark approaches where imple-
mentations by the original authors exist with (YES), re-implementations
by other authors as (RE), and all others as (NO) in Section 4. We
encourage authors to publish their code to improve the reproducibility
of their results and hope to see more open-source implementations in
the future.

5. Discussion

The previous sections presented the results of our survey in detail.
In the following we summarize these results, discuss open issues in the

research area on log-based anomaly detection using deep learning, and
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propose ideas for future research in course of answering our research
questions from Section 1.

RQ1: What are the main challenges of log-based anomaly detection
with deep learning? When carrying out our systematic literature review
we assessed whether and to what degree the current state-of-the-art
addresses the research challenges enumerated in Section 2.2. It turns
out that data instability, i.e., the appearance of previously unknown
events, is one of the main issues addressed by the reviewed approaches.
The key idea to resolving this problem is currently to represent logs as
semantic vectors so that new or changed events can still be compared
to known events by measuring their similarities (Catillo et al., 2022;
Han & Yuan, 2021; Le & Zhang, 2021; Li et al., 2020; Lv et al.,
2021; Ott et al., 2021; Syngal et al., 2021; Xi et al., 2021; Yang
et al., 2021; Zhang, Li, et al., 2021; Zhang et al., 2019). There are
many techniques for generating numeric vectors to represent log events
(cf. Section 4.3.4) and thus resolve the issue of feeding unstructured
and textual input data to neural networks. Imbalanced data sets are
another challenge that is specifically addressed by some approaches.
In particular, authors suggest to use sampling techniques as well as
context-aware embedding methods as possible solutions (Farzad, 2020;
Li & Li, 2020; Sun et al., 2020; Wang, Chen, et al., 2021; Xia et al.,
2021).

Some approaches are specifically designed to enable applicabil-
ity in scenarios that demand efficient and lightweight algorithms,
e.g., deployment on edge devices. This is achieved by leveraging low-
dimensional vector representations as well as convolutional neural net-
works that are more efficient than recurrent neural networks (Chean-
sunan & Phunchongharn, 2019; Guo, Wu, et al., 2021; Wang et al.,
2022). Similarly, some approaches support log stream processing and
enable adaptive learning (i.e., dynamically changing the baselines for
anomaly detection) by incrementally re-training the models with man-
ually identified and labeled false positive samples (Yen et al., 2019). It
must be noted that there is currently no solution how to automatically
determine that re-training is required without label information or
manual intervention. The challenge of interleaving logs is generally
solved by leveraging session identifiers directly from parsed log data;
however, there are also approaches that evade the need for sequences
altogether, e.g., by relying on sentiment analysis (Zhang, Dai, et al.,
2021).

A way to address the challenge that only few labeled data is
available is provided by transfer learning, where models are trained on
one system and tested on another (Chen, Zhang, et al., 2020; Guo, Lin,
et al., 2021). The main idea is that the log event patterns learned by the
neural networks are similar across different domains and that already
seen anomalies can be recognized and classified. Guo, Wu, et al. (2021)
are the only authors to consider federated learning, where learning
takes place in a distributed manner across multiple systems. Hashemi
and Mäntylä (2021) also go into this direction as they combine multiple
data sets to evaluate whether this affects the performance of their
model. We believe that federated learning could be an interesting topic
for future publications as there exist many real-world scenarios where
log data is monitored in distributed machines but orchestration of
deployed detectors takes place centrally (Preuveneers et al., 2018).

The challenge of facing diverse artifacts of anomalies is only par-
tially addressed since the vast majority of approaches focus on se-
quences and frequencies of log events, but only few consider event
parameters or inter-arrival times for detection. We recommend to also
consider techniques that address other patterns that appear in normal
system behavior and may be useful to detect specific anomalies, such as
changes of parameter value correlations, periodic behavior, statistical
distributions, etc. Moreover, we observed that the explainability of
the proposed deep learning models is relatively low, i.e., it is non-
trivial to understand the criteria for classifications and thus detection
of model bias as well as interpretation of false positives and false
negatives is generally difficult. This hinders root cause analysis of
detected anomalies and produces an overhead for system operators.
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Specifically in security-critical systems (e.g., intrusion detection) it is
vital to understand the functioning – and thus the limits – of deployed
anomaly detectors. We would therefore recommend to direct future
research in log-based anomaly detection towards explainable artificial
intelligence (Arrieta et al., 2020).

RQ2: What state-of-the-art deep learning algorithms are typically ap-
plied? Our review shows that diverse types of deep learning algorithms
are used in scientific publications and that it is common to combine
several approaches. Thereby, RNNs are clearly the most applied models,
because they are a natural choice for capturing sequential patterns
in log data. CNNs are used as an efficient alternative to RNNs as
they are also able to pick up event dependencies. On the other hand,
Autoencoders and Transformers are frequently applied as they support
unsupervised learning. While GANs, MLPs, GNNs, and EGNNs are
only used by few approaches, they have beneficial properties (cf. Sec-
tion 4.2.1) that make these models worth considering. Similarly, we are
convinced that other deep learning architectures that are not explored
in the reviewed literature could yield interesting insights, e.g., deep
belief networks or deep reinforcement learning (Sarker, 2021a, 2021b).

We believe that the application of specific techniques is mostly
motivated by the log data to be analyzed and anomalies to be detected.
The fact that all of the commonly used log data sets involve anomalies
that manifest as sequentially occurring events (cf. Section 4.5.1) thus
explains the tendency towards RNNs. However, as anomalies could
also manifest as point or contextual anomalies (cf. Section 2.1.3) we
recommend to consider alternative log data sets with different types
of anomalies and to develop approaches for these cases. For exam-
ple, in our earlier works (Landauer et al., 2022; Landauer, Skopik,
Wurzenberger, Hotwagner, & Rauber, 2020) we published log data sets
where anomalies affect combinations, compositions, and distributions
of event parameter values in addition to frequencies and sequences of
log events.

RQ3: How is log data pre-processed to be ingested by deep learning
models? Our survey shows that there are three main ways to approach
feature extraction from raw log data. First, by tokenizing log messages,
which is a simple method that does not require any parsers but lacks
semantic interpretation of the tokens. Second, by parsing the messages
and extracting information from collections of log events, such as se-
quences, counts, or statistics. Third, by extracting parameters including
the time stamps from parsed log events. There are a multitude of
methods to represent these features as numeric vectors to be ingested
by deep learning models.

While traditional machine learning methods such as SVM or PCA
work best with event count vectors, most approaches leveraging deep
learning neural networks use semantic vectors to yield the best re-
sults (Wang, Zhang, Wang & Cao, 2021). Thereby, the tokens that make
up the log messages are represented as numeric vectors and considered
in the context of their sequence of event occurrences. Most approaches
employ these sequential features, while frequencies, one-hot encoded
data, and embedding layers are used less often or only as a contributing
feature.

RQ4: What types of anomalies are detected and how are they identified
as such? Almost all reviewed approaches focus on sequential anomalies
that either manifest in the sequences of events, the sequences of tokens
within events, or a combination of both. Only few approaches make
use of event counts or detect single log lines as outliers without their
context of occurrence. The detection technique is generally driven
by the output of the neural networks. While binary or multi-class
classifications are directly used to report anomalies, all numeric outputs
such as anomaly scores or reconstruction errors are compared against
pre-defined thresholds and probability distributions of log events are
used to check whether the actual events is within the top candidates.
Determining these thresholds is usually carried out empirically for a
particular log file.

RQ5: How are the proposed models evaluated? Our survey on com-

monly used log data sets from Section 4.5.1 shows that there are only
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four data sets that are used by a majority of the approaches: HDFS,
BGL, Thunderbird, and OpenStack. All these data sets are collected from
scenarios involving high-performance computing and virtual machines
that are affected by randomly occurring failures. It is obvious that
the availability of anomaly labels make these data sets particularly
attractive for scientific evaluations. As mentioned before, we argue that
a larger and more diverse set of input data sets would be beneficial
to evaluate whether the proposed approaches are capable of detecting
anomalous artifacts other than unusual sequences. In particular, the
consequences of cyber attacks rather than failures could result in log
artifacts that are suitable for detection and an appropriate use-case for
anomaly detection.

We manually analyzed the HDFS data set as it is the most popular
of all and found that it is far from challenging to achieve competitive
detection rates. The reason for this is that many of the anomalous event
sequences are trivial to identify as they involve event types that never
occur in the training data or involve fewer elements than the shortest
normal sequences. Using these two heuristics we are able to achieve
𝐹1 = 90.41%, 𝐴𝐶𝐶 = 99.48%, 𝑃 = 98.37%, 𝑅 = 83.65%, 𝐹𝑃𝑅 = 0.04%
on the test data. Moreover, using these heuristics in combination with
the simple Stide algorithm (Forrest, Hofmeyr, Somayaji, & Longstaff,
1996) that moves a sliding window of a given length over the data
and looks for sub-sequences that have not been seen before in the
training data further improves the evaluation metrics to 𝐹1 = 95.14%,
𝐶𝐶 = 99.71%, 𝑃 = 95.27%, 𝑅 = 95.01%, 𝐹𝑃𝑅 = 0.14% when using
window size of 2. Omitting sequential information altogether and

nly leveraging similarities of event count vectors further pushes these
valuation metrics to 𝐹1 = 98.86%, 𝐴𝐶𝐶 = 99.93%, 𝑃 = 97.81%,
= 99.92%, 𝐹𝑃𝑅 = 00.07%. For comparison, DeepLog only yields

etection scores of 𝐹1 = 95.72%, 𝐴𝐶𝐶 = 99.75%, 𝑃 = 95.12%, 𝑅 =
6.32%, 𝐹𝑃𝑅 = 0.15% (Du et al., 2017). We provide the code for our
xperiments in a reproducible form as open-source implementations
in separate repositories for Stide10 and similarity-based event count
ector clustering11). It is not clear to us why such approaches were
ot used as benchmarks in any of the reviewed publications: They
nly take a fraction of the time for training and processing the test
ata in comparison to deep (and also most conventional) learning
odels, and additionally have a much better explainability than neural
etworks. Similar conclusions have been drawn for the case of log event
rediction using the HDFS data set (Mäntylä, Varela, & Hashemi, 2022).
e argue that the fact that such simple algorithms achieve competitive

etection rates to deep learning models further urges authors to con-
ider additional data sets where more diverse anomalous artifacts are
resent and the benefits of their approaches such as robustness against
ata instability become apparent.

Another issue that we noticed is that evaluations are usually carried
ut on the basis of anomalous sequences, i.e., the whole sequence is
onsidered normal or anomalous rather than its elements (Du et al.,
017). However, parts of long sequences may actually represent nor-
al system behavior while only a few elements should be considered

nomalies. It would be interesting to evaluate whether detection ap-
roaches are able to pinpoint exactly which parts of sequences are
nomalous, which would also be practical for manual investigations of
eported anomalies by system operators. Obviously this requires that
ata sets are labeled on the granularity of single events rather than
essions (Mäntylä et al., 2022).

Finally, we note that almost all evaluations rely on metrics such
s the F-score (cf. Section 4.5.2) that are known to not accurately
epict the classification or detection performance when data sets are
ighly imbalanced. To avoid misinterpretations of evaluation results, it
s recommended to also compute metrics that are more robust against
lass imbalance, such as the specificity or true negative rate (Le &
hang, 2022).

10 https://github.com/ait-aecid/stide
11 https://github.com/ait-aecid/count-vector-clustering

https://github.com/ait-aecid/stide
https://github.com/ait-aecid/count-vector-clustering
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RQ6: To what extent do the approaches rely on labeled data and support
incremental learning? Log-based anomaly detection is most often applied
n use-cases that aim to disclose unexpected system behavior such as
ailures or cyber attacks. Since these artifacts are not known beforehand
nd thus no labels can exist, un- or semi-supervised approaches are
enerally more widely applicable and therefore preferable (Chandola
t al., 2009). Since semi-supervised learning can be achieved with most
eural network architectures including RNNs, but only specific deep
earning models support fully unsupervised operation, we find 28 semi-
upervised approaches in our reviewed literature as opposed to only 8
ut of 62 approaches that are unsupervised. We did not expect to see
he relatively large amount of 26 supervised approaches that require
t least partially labeled anomalies for training. Moreover, with 54 out
f 62 a vast majority of approaches only support offline training. This
ncludes most supervised models and also all other approaches that do
ot intend to dynamically and automatically update the trained models
ver time. Only 8 of the reviewed approaches enable continuous model
djustments through re-training or EGNN model architectures (Decker
t al., 2020).
RQ7 : How reproducible are the presented results in terms of availability

f source code and used data? As pointed out in Section 4.5.4, a majority
f the reviewed approaches make use of publicly available data sets to
valuate their approaches and only 7 publications rely on private data
ets. The reproducibility of the presented results is thus relatively high,
ssuming that readers are willing to re-implement the approaches based
n the descriptions from the papers from scratch. We could only find 9
ublicly available source codes of approaches published by the original
uthors as well as 4 re-implementations, indicating a low reproducibil-
ty overall. We encourage authors to publish reproducible experiments
n the future to also enable large-scale quantitative comparisons in
urveys.

Recommendations. Based on the aforementioned answers to our
esearch questions and the identified issues, we propose the following
esearch agenda: First of all, adequate and diverse log data sets with
tate-of-the-art benchmarks are needed to ensure applicability of deep
earning in generic anomaly detection use-cases and demonstrate their
uperiority over simple or conventional detection methods. Second, low
xplainability of detection results is a primary concern that permeates
he entire research field and needs to be addressed appropriately.
esolving these two issues largely improves the comprehensibility and
eliability of proposed methods and facilitates the development of novel
eep learning detection algorithms. With this research agenda in mind,
e summarize our recommendations for future research as follows.

• Create or identify new log data sets that specifically involve
sequential anomalies and are less affected by other types of
anomalies when evaluating approaches that ingest log data as
sequences.

• Work on methods that improve the explainability of proposed ap-
proaches for anomaly detection using deep learning, for example,
by the extraction of specific detection rules from the models or
by determining the main features responsible for the detection
of specific instances and augmenting detection results with that
information.

• Consider log artifacts other than event sequences for anomaly
detection or use them as additional input to deep learning models.

• Propose novel anomaly detection methods or deep learning ar-
chitectures that resolve common challenges for practical applica-
tions, specifically regarding incremental and stream processing or
log data, adaptive learning, as well as efficient and low-resource
training.

• Consider pinpointing anomalies within sequences rather than
detecting whole sequences as anomalous.

• Allow researchers to reproduce and extend presented results by
publishing developed code as open-source and used log data sets
on data sharing repositories.
17
6. Conclusion

This paper presents a survey of 62 scientific approaches that pursue
the detection of anomalous events or processes in system log data using
deep learning. The survey shows that diverse model architectures are
suitable for this purpose, including models for sequential input data
such as recurrent or convolutional neural networks, language-based
models such as transformers, as well as unsupervised models such as
Autoencoders or generative adversarial networks. Similarly, there are
different features used for training and subsequently for detection, such
as sequences and counts of events or tokens as well as parameter values
or statistics derived from the events. To enable processing of these
features as input to neural networks it is necessary to encode them
as numeric vectors, for example, through semantic vectorization or
one-hot encoding. Anomalies are then detected either directly through
classification or by deriving some kind of anomaly score from the net-
work that allows to discern normal from anomalous system behavior.
The survey shows that there are open challenges that are not suffi-
ciently resolved by existing approaches, including detection techniques
that go beyond sequential anomalies, low explainability of trained
models and classification results, lack of representative evaluation data
sets containing diverse attack artifacts, and a low reproducibility.
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