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Abstract—Intrusion detection systems (IDS) monitor system logs and network traffic to recognize malicious activities in computer

networks. Evaluating and comparing IDSs with respect to their detection accuracies is thereby essential for their selection in specific

use-cases. Despite a great need, hardly any labeled intrusion detection datasets are publicly available. As a consequence, evaluations

are often carried out on datasets from real infrastructures, where analysts cannot control system parameters or generate a reliable

ground truth, or private datasets that prevent reproducibility of results. As a solution, we present a collection of maintainable log

datasets collected in a testbed representing a small enterprise. Thereby, we employ extensive state machines to simulate normal user

behavior and inject a multi-step attack. For scalable testbed deployment, we use concepts from model-driven engineering that enable

automatic generation and labeling of an arbitrary number of datasets that comprise repetitions of attack executions with variations of

parameters. In total, we provide 8 datasets containing 20 distinct types of log files, of which we label 8 files for 10 unique attack steps.

We publish the labeled log datasets and code for testbed setup and simulation online as open-source to enable others to reproduce

and extend our results.

Index Terms—Log data, intrusion detection, security testbeds
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1 INTRODUCTION

CYBER attacks pose a threat to network and system secu-
rity at any scale. To achieve their goals, which usually

range from intrusion, espionage, sabotage, and system take-
over, adversaries typically utilize a wide range of tools and
attack techniques to discover previously unknown vulner-
abilities and find new attack vectors. While system opera-
tors seek to keep their network components patched, the
ever-changing threat landscape implies that ultimate secu-
rity is impossible to guarantee as networks continue to
grow dynamically over time.

To counteract these problems, manual security-related
tasks of system operators have long been supported by auto-
matic tools that continuously monitor networks and systems
for both known and unknown threats. Thereby, these so-
called intrusion detection systems (IDS) usually ingest net-
work traffic or system log data and analyze their contents for
malicious activities. Many IDSs also carry out file integrity

checks or scan registry keys and system memories; however,
in the context of this paper we solely focus on intrusion detec-
tion techniques that leverage log data, i.e., sequentially gener-
ated and chronologically ordered events that usually
comprise a timestamp and a message containing parameters.
IDSs that analyze such log data are most often differentiated
into signature-based detection systems, that search for prede-
fined indicators such as hash sums that are known to corre-
spond to malware, and anomaly-based detection systems,
that employ self-learning techniques to capture the baseline
system behavior and detect any deviations of this learned
model as potential threat [1], [2].

Independent of their type, evaluating IDSs for their abil-
ity to detect attacks is crucial to compare different
approaches and objectively select appropriate detection
techniques for specific system environments. Thereby, pub-
licly available benchmark log datasets are an indispensable
prerequisite to enable evaluations. Unfortunately, such log
datasets are scarce and usually do not fulfill the require-
ments set by security researchers. In particular, one of the
most crucial aspects of evaluations is to compute detection
accuracies, which requires a ground truth that specifies all
malicious log events. However, datasets collected from real
infrastructures generally lack a reliable ground truth as it is
not possible to ensure that only normal and benign activities
are carried out on the network, except for purposefully
injected attacks [3]. Moreover, adjusting configurations of
components in productive environments or launching
attack cases is often only possible in a limited scope since
the security and availability of these systems are of utmost
importance to the organizations hosting the infrastructures
[4]. In addition, datasets collected in real environments
most often cannot be published due to privacy concerns as
log data frequently contains user data or parts of sensitive
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file contents. An alternative strategy is to collect log data
from honeypots, i.e., servers that are purposefully deployed
to be targeted by attackers [5]. Similar to real environments,
it is non-trivial to understand and label all attack artifacts
that are present in the monitored data. Moreover, as these
servers are usually isolated from productive networks, their
datasets do not necessarily involve representative benign
activities by real users.

To alleviate problems with real infrastructures alto-
gether, security analysts recreate networks and systems in
testbeds and use simulations to generate a base load of nor-
mal system operation. However, even datasets created in
such controlled environments have been criticized for sev-
eral reasons, for example, missing documentation that
explains installed services [6], [7], limited generalizability
[7], outdated or too simple attack cases [8], [9], heavy pre-
processing such as removal of event parameters [10],
involvement of closed-source software [4], [9], lack of peri-
odic behavior [6], missing reproducibility [4], insufficient
duration [11], focus on single hosts rather than the whole
network [6], or lack of variations of attack parameters [3].

In addition, testbeds generally require a high effort to
setup, configure, update, and adjust components. In our ear-
lier work [12], we therefore propose to introduce concepts
from model-driven engineering in testbed deployment pro-
cesses. Fig. 1 visualizes our procedure for generating labeled
log datasets from model-driven testbeds. Contrary to com-
mon testbed generation approaches that result in single static
test environments, our approach implies to generate models
for infrastructure setup, normal behavior simulation as well
as attack execution that act as templates by leaving out sev-
eral parameters as variables, and to define transformation
rules that dynamically fill out these parameters when launch-
ing a testbed. Themain advantage of thismethodology is that
it is simple to generate an arbitrary number of datasets that
stem from different testbeds with variations, i.e., normal and
malicious traces are slightly different across datasets and
thus enable more robust evaluations. We recognize some
shortcomings of our implementation, including a fairly sim-
ple network structure and an unreliable labeling strategy. To
overcome these problems, we largely extend the scope of our
simulation and integrate an automatic labeling mechanism
[13]. We therefore formulate our research question for this
paper as follows: To what extent is is possible to automatically
generate realistic, reproducible, and labeled log datasets from
model-driven testbeds to enable evaluation of intrusion detection
systems?

Alongside with this paper, we publish a collection of log
datasets generated with the presented approach as well as
all code that is necessary to run our testbed and simulations
within it so that other researchers are able to replay or aug-
ment the simulation runs. Our datasets are therefore main-
tainable and allow for continuous improvements such as
enlargements of the labeling range as well as additions of
datasets from new testbeds. We summarize our contribu-
tions as follows:

� A publicly available labeled collection of log datasets
for evaluation of IDSs1,

� an analysis and comparison of these datasets with
respect to real user logs,

� an open-source implementation to launch testbeds
for dataset generation,2 and

� an open-source library3 and models4 to simulate nor-
mal user behavior and attacker activities.

The remainder of this paper is structured as follows. Sec-
tion 2 reviews existing log datasets. In Section 3 we outline
our methodology for generating log datasets and explain
our modeled scenario. We analyze the generated datasets in
Section 4 and discuss the results in Section 5. Finally, Sec-
tion 6 concludes the paper.

2 BACKGROUND AND RELATED WORK

Due to the large need for datasets in cyber security research,
several attempts to generate benchmark datasets were
made in the past. However, most of these datasets are cre-
ated with specific use-cases in mind and are thus not gener-
ally applicable. To compare these datasets on a common
scheme, we first describe a set of requirements that are rele-
vant for intrusion detection datasets and then discuss the
fulfillment of these aspects for several state-of-the-art
datasets.

2.1 Requirements

Recording log datasets in testbeds or real environments is
not straightforward; it is a task that requires careful plan-
ning, since the quality and usefulness of the resulting data
strongly relies on several decisions made by the analyst. We
gathered a list of requirements by reviewing design princi-
ples that were followed by authors of existing datasets. In
the following, we summarize our findings.

1) Use-case. To ensure relevance and authenticity of the
dataset, it is necessary to design the overall network
layout and technical infrastructure of the system
where log data is recorded in the context of a specific
scenario, such as enterprise IT or operating systems.
This also includes services available on the involved
machines [12]. Clearly specifying the scope of the
simulation also helps to define the limitations of the
dataset.

2) Synthetic data generation. Datasets collected from real-
world system environments are sometimes consid-
ered superior to synthetically generated data due to
the fact that they are per definition realistic, while
simulations only try to replicate their characteristics
[15]. However, real datasets have the strong disad-
vantage that it is infeasible to differentiate normal
from anomalous or malicious logs with complete cer-
tainty, since the root causes of some actions are

Fig. 1. Procedure for generating labeled log datasets.

1. AIT-LDSv2.0 [14] available at https://zenodo.org/record/
5789063

2. Kyoushi testbed environment available at https://github.com/
ait-aecid/kyoushi-environment

3. Kyoushi simulation package available at https://github.com/ait-
aecid/kyoushi-simulation

4. Kyoushi simulation models available at https://github.com/ait-
aecid/kyoushi-statemachines
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unknown to the analysts [3]. Obviously, synthetic
dataset generation implies that scripts that replicate
normal behavior on an appropriate level of detail are
prepared beforehand. This particularly concerns
models for user activities that normally occur on the
system, which can be very diverse and thus non-triv-
ial to formalize. On the plus side, modeling the nor-
mal behavior effectively enables to steer the
parameters of the simulation to generate data that is
representative for different levels of detection com-
plexity [3]. Therefore, we argue that synthetically
generated log datasets are the best option for IDS
evaluations.

3) Injection of relevant attacks. As part of a realistic evalu-
ation of IDSs, it is necessary to select recent and rele-
vant attack scenarios that are suitable for the system
environment at hand [8], [12]. Otherwise, outdated
attack cases may not yield representative intrusion
detection evaluation results that are comparable to
that of more modern attacks. Relevant attacks may
be selected through Internet research or by deploy-
ing honeypots in the networks [5].

4) Collection of system logs. When IDSs are applied in
productive systems, they are usually able to analyze
logs in raw and unaltered form. Accordingly, log
datasets for evaluation of IDSs should also provide
logs that are not processed in any way [6]. Fortu-
nately, synthetic datasets recorded in simulations
are usually less critical when it comes to privacy,
since no humans are involved and thus anonymiza-
tion of personal user data that possibly occurs in the
logs is not required. This also concerns sensible con-
tents of files that may appear in the logs and should
thus be simulated with collections of predefined
dummy files [4]. Another important aspect is to con-
figure the logging framework in a realistic way that
fits the use case. For this, analysts must decide where
to log and what to log [16]. In particular, anomaly-
based IDSs require logs corresponding to normal
system behavior to learn a baseline for detection,
meaning that logging levels should be set to info or
even debug rather than error or warning. Moreover, it
is beneficial to log performance metrics such as CPU
or memory data, because they are also adequate
inputs for IDSs [17].

5) Network traffic captures. Beside system logs that are
the main input of host-based IDSs, network traffic is
a widely used data source for network-based IDSs.
Accordingly, datasets should also include packet
captures to enable evaluation of network-based IDSs
and hybrid IDSs that make use of both system logs
and network traffic [18], [19].

6) Inclusion of periodic behavior. Productive system envi-
ronments naturally exhibit periodic behavior, for
example, cron jobs are scheduled for execution in
fixed intervals and events originating from human
activities follow daily and weekly patterns of work
shifts. Self-learning IDSs are able to integrate these
cycles in their models to detect contextual anomalies,
i.e., events that are considered anomalous due to
their time of occurrence [2]. It is therefore essential to

expand the duration of the simulation to cover sev-
eral of these cycles [6].

7) Label availability. Ground truth tables that unambig-
uously assign labels to all events are needed to
compute evaluation metrics such as detection accu-
racy or false alarm rates [8], [19]. Accordingly, it is
essential to provide a comprehensible methodology
for creating correct ground truth tables for IDS
evaluation.

8) Documentation. Datasets should be published with
detailed descriptions of all relevant aspects of the
data creation. Otherwise, it is not possible for others
to fully understand all artifacts present in the data,
which could possibly lead to incorrect assumptions
and invalidate evaluation results [6].

9) Attack repetitions. For anomaly-based IDSs that only
learn from normal behavior and then classify test
data either as normal or anomalous, it is sufficient to
only have artifacts of a single attack execution in the
data. However, for attack classification it is necessary
that attacks are at least present in training and test
datasets, and possibly validation datasets. Accord-
ingly, attacks should be launched multiple times by
repeating the simulation. In addition, research on
alert aggregation urgently requires useful datasets,
especially for system logs analyzed by host-based
IDSs [20]. Thereby, clustering-based aggregation
methods require that the same attacks are carried
out multiple times to form groups [21].

10) Attack variations. Approaches for both attack classifi-
cation and alert aggregation should be challenged by
introducing variations in attack executions [3]. More-
over, evaluation results have a higher robustness
when they are based on multiple attack executions
that cover a spectrum of possible attack variations
[12], [19]. This behavior could be realized by dynam-
ically changing attack parameters in each simulation
run.

11) Reproducibility of the dataset. Technologies that consti-
tute the simulation are continuously updated. To
avoid that datasets become outdated, it should be
possible to repeat simulations at any given time [4],
[9]. This also allows to reuse existing assets and only
change certain parts of the simulation, e.g., keep the
infrastructure and user simulation, but include
another attack vector. It is therefore beneficial to
publish all code used to carry out the simulation
alongside the resulting datasets.

2.2 Literature Analysis

The previous section outlines a set of requirements that
should be fulfilled by datasets to enable evaluation of intru-
sion detection systems. We gathered several datasets that
are commonly used in scientific evaluations and analyzed
whether they fulfill our requirements. We used the follow-
ing strategies to retrieve relevant datasets for this analysis.
First, we obtained a set of commonly used datasets from
surveys on intrusion detection systems, such as [1]. Second,
we analyzed the related work sections of the publications
presenting these datasets to find more approaches that
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focus on dataset generation. Third, we carried out a web
search for datasets and related publications using the terms
“system log dataset generation”, “host-based intrusion
detection”, “log data anomaly detection”, and combinations
thereof.

Table 1 shows a complete list of all datasets and our find-
ings, where ✓indicates that the datasets fulfill the respective
requirement, � indicates partial fulfillment, and no symbol
means that the requirement is not fulfilled. Note that the
datasets in the table are sorted by their publication date in
ascending order. In the following, we discuss our findings
and relevant properties of the datasets in detail.

One of the earliest log datasets that became widely used
in intrusion detection is the KDD Cup 1999 dataset [22]. The
logs were collected during a simulation of several intrusions
in a military network. Other than many modern datasets,
the authors made sure to label all events with the respective
attack types and furthermore repeat and vary the attacks to
yield different probability distributions in the training, vali-
dation, and test datasets. These properties make this dataset
especially attractive for evaluating machine learning techni-
ques. Even today it is still widely used in scientific publica-
tions, although the dataset has been repeatedly criticized
for being outdated, too simple, and not reproducible due to
the fact that closed-source tools were used for traffic genera-
tion [9].

As a consequence of these criticisms, Creech et al. gener-
ated ADFA-LD [11] and ADFA-WD [26], two datasets con-
taining sequences of system calls on a Linux and Windows
host respectively. For the generation of the dataset, the
authors simulated normal activities such as web browsing
and file editing and launched several attacks, such as brute-
force logins and exploits for webshell uploads. Unfortu-
nately, the system calls are stripped from all contextual
variables such as timestamps, parameters, and return values,
and are thus not representative for real data [10]. Moreover,
the dataset is criticized for only including a single host, not
generalizing well for other systems, as well as a lack of

documentation detailing how the dataset is collected and
what services are installed [6], [7]. The AWSCTD [10] aims to
resolve at least one of these issues by recordingWindows sys-
tem calls without removing any parameters and further
extend the set of launched attacks. However, the authors also
consider only a single host and not a full network.

Another dataset based on Linux system calls is LID-DS
[29]. While the authors explain the attack scenarios in great
detail, there is only little information on the simulation of
normal system behavior. They carry out all attacks multiple
times and collect the logs from hundreds of runs that last
around 30 seconds each. CIDD [25] provides logs specifi-
cally for masquerade attacks. One of the noteworthy aspects
of this data is that the authors manage to label all events by
correlating network and system logs and mapping them to
attack tables specifying the expected times, IP addresses,
and user names related to attacks. Moreover, the users gen-
erating normal activity in the dataset are categorized into
normal, advanced, administrators, programmers, and secre-
tary users.

One of the few datasets that also include system logs
other than system calls is from the VAST Challenge 2011
[24]. In particular, the dataset comprises firewall logs, IDS
alerts, syslogs and network packet captures. Among the
attacks launched against the simulated system are security
scans, denial-of-service attacks, and remote desktop connec-
tions as consequences of a social-engineering attack. The
authors also provide a document describing the solutions to
the challenge that depict a ground truth of malicious events.
The dataset presented alongside the open-source testbed
called SOCBED [4] contains system logs from a network of
Windows and Linux hosts. While the authors did not collect
network traffic for this dataset, they state that it is simple to
extend their testbed accordingly and repeat the experi-
ments. In addition, the authors discuss variations in log
data, however, only with respect to circumstantial factors
such as system performance and not purposefully incorpo-
rated variations as accomplished by our model-driven

TABLE 1
Fulfillment of Requirements for Existing Datasets

Requirement

Dataset (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

KDD Cup 1999 [22] Military IT ✓ ✓ ✓ ✓ ✓ ✓
HDFS [23] Supercomputer ✓ � ✓
VAST Challenge 2011 [24] Enterprise IT ✓ ✓ ✓ ✓ ✓ ✓
CIDD [25] Cloud Systems ✓ ✓ ✓ ✓ ✓ ✓
ADFA-LD [11] Linux OS ✓ � ✓ ✓ ✓
ADFA-WD [26] Windows OS ✓ � ✓ ✓ ✓
Skopik et al. [27] Enterprise IT ✓ ✓ ✓ ✓ ✓
CIDDS [8] Enterprise IT ✓ ✓ ✓ ✓ ✓
NGIDS DS [15] Enterprise IT ✓ ✓ ✓ ✓
UGR’16 [6] Enterprise IT ✓ ✓ ✓ ✓ ✓ ✓
CICIDS 2017 [28] Enterprise IT ✓ ✓ ✓ ✓ ✓ ✓
AWSCTD [10] Windows OS ✓ ✓ ✓ � ✓
LID-DS [29] Linux OS ✓ ✓ ✓ ✓ ✓ ✓
AIT-LDSv1.1 [12] Enterprise IT ✓ ✓ ✓ ✓ � ✓ ✓ ✓
IoT-DDoS [7] Internet of Things ✓ ✓ ✓ � ✓
Loghub [30] Supercomputer and OS ✓ ✓ ✓
SOCBED dataset [4] Enterprise IT ✓ ✓ ✓ � ✓ ✓ � ✓
AIT-LDSv2.0 (this paper) Enterprise IT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
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approach. Skopik et al. [27] also collect network traffic as
well as access and application logs on a testbed where simu-
lated users click around on a mail platform. Contrary to
most existing papers that present new datasets, they config-
ure their user simulations based on behavior of real users
and also validate their data by comparison of accessed
resources. Other datasets comprising system and applica-
tion logs from various services are provided in Loghub [30].
The main problem with these datasets is that they mainly
involve anomalous traces related to failures rather than
cyber attacks.

While system log datasets are most often collected from
single hosts, whole networks comprising several hosts are
usually deployed to generate network traffic datasets. For
generating CIDDS [8], the authors recreated a virtual com-
pany with network components that are commonly used in
enterprise IT, e.g., Windows and Linux hosts as well as file
shares and web servers, and place them in separate subnets
for managements, office, and developers. Their user simula-
tions are based on state machines to generate complex
behavior patterns instead of repeated sequences and their
models also respect working hours and breaks. Moreover,
their network is also connected to the Internet to mix the
simulated traffic with real connections and possibly attacks.
To generate the UGR’16 [6], the authors also use a combina-
tion of real user behavior traffic and simulated attack traffic.
Thereby, the authors specifically pay attention to the cyclic
behavior of communication logs that originates from daily
or weekly usage patterns. Moreover, their attacks are gener-
ated with random starting times.

The authors of CICIDS 2017 [28] follow a different
approach as make use of a profiler that analyzes real com-
munication in a network and then arbitrarily generates data
following these patterns. They recorded the network traffic
while launching several attacks, among which are denial-of-
service attacks, vulnerability exploits, and a botnet. Simi-
larly, a network traffic generation appliance was also used
to generate NGIDS DS [15]. Other than these datasets, the
IoT-DDoS [7] specifically focuses on a scenario that simu-
lates Internet of Things in a network.

In our earlier work we present the AIT-LDSv1.1 [12], a
system log dataset collected from a webserver hosting a
content management system and groupware. Other than
most existing approaches for dataset generation, the paper
[12] describes a model-driven strategy for automatic testbed
deployment to generate multiple datasets with variations of
attack executions. We recognize several shortcomings of the
dataset: First, beside some machines running user simula-
tions, the network is relatively simple as it only consists of a
single webserver. Second, the simulation focuses on system
log data and thus no network traffic is captured. Third,
labeling of malicious events is not reliable since it relies on
similarity-based matching, which may lead to incorrectly
unlabeled lines in case that variations lead to new or dissim-
ilar events [13]. Finally, only the resulting data is publicly
available, but the scripts for deploying the testbed and run-
ning the simulation are not accessible. As a consequence of
these shortcomings, we propose the AIT-LDSv2.0 in this
paper. In comparison to our previous testbed for log data
generation, we increased the network complexity, collected
logs from all components of the network (e.g., the firewall),

extended the simulation of normal behavior, improved the
strategy for event labeling, and published all code for
deploying the testbed along with the generated dataset. As
visible in Table 1, our new dataset meets all requirements
stated in Section 2.1. We discuss the fulfillment of these
requirements in detail in Section 5.1.

3 LOG DATASET GENERATION METHODOLOGY

This section outlines the overall methodology for the gener-
ation of our dataset. We first describe a procedure for auto-
matic testbed deployment that leverages concepts from
model-driven engineering to enable the generation of multi-
ple datasets with variations. Subsequently, we explain the
application scenario modeled by our testbed and state rele-
vant design criteria for the monitored network, simulations
of normal behavior, and injected attacks.

3.1 Testbed Generation

In our earlier work [12] we presented a model-driven meth-
odology for testbed generation. We also published a follow-
up paper that proposes a strategy for log event labeling [13].
In this paper, we combine both methods to generate multi-
ple labeled datasets with variations. In the following, we
briefly summarize the main aspects of model-driven test-
beds and the integration of our labeling procedure.

As described in Section 2, synthetic log datasets are com-
monly collected on testbeds, i.e., one or more virtual
machines deployed in isolated networks. Thereby, setting
up such testbeds involves time- and resource-consuming
tasks that often require a high amount of domain knowl-
edge. The resulting testbeds are often relatively static, i.e.,
difficult to modify in hindsight when updates of certain
components are required or changes of the scenario become
necessary [12]. Model-driven testbed generation, however,
alleviates these problems by allowing analysts to design
testbeds on a higher level of abstraction and use these mod-
els to automatically instantiate arbitrary numbers of test-
beds. On top of that, it is possible to specify parameter
spaces rather than specific values for all kinds of testbed
properties, including network size, frequencies of user
interactions, or attack attributes. Datasets generated from
such approaches include variations of the system environ-
ment as well as user and attacker behavior that manifest in
the logs, which is beneficial for IDS evaluation since it
increases robustness of the results and makes the datasets
applicable for evaluation of alert aggregation.

Fig. 2 depicts an overview of the layers involved in such
a model-driven approach for dataset generation. Layer (L4)
represents the highest level of abstraction and comprises
three different types of models: (i) state machines and
scripts that simulate normal user behavior, (ii) provisioning
scripts for deploying and configuring the technical infra-
structure, and (iii) scripts that launch attacks and rules that
assign labels to the generated events. All of these models
are designed as templates, i.e., they leave out several param-
eters that are dynamically filled out when instantiating a
specific testbed based on predefined ranges and lists. For
example, IP addresses of all components are randomly
chosen from pools, user names are selected from
databases, transition probabilities are calculated from
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specific distributions, and attack parameters are randomly
selected from predefined options in attack frameworks.
Accordingly, we refer to the templated scripts on layer (L4)
as testbed-independent models (TIM).

Layer (L3) contains so-called testbed-specific models
(TSM) that are instantiated from the TIMs. This is accom-
plished by running a transformation engine that processes
all templates provided by the TIMs and fills out all parame-
ters according to their predefined spaces. Note that this pro-
cess is fully automatic and can be repeated as often as
needed to generate any desired number of testbeds. The
resulting TSMs are runnable scripts that are ready to be exe-
cuted in order to deploy the virtual machines, configure all
services, start the user simulations, and launch the attacks
at a given point in time. The simulation then runs in real-
time to ensure that all generated log artifacts, e.g., time-
stamps and latency times, resemble execution in real-world
scenarios.

Once the simulation is completed, i.e., the analyst deter-
mines that logs from a sufficiently long time period are col-
lected or a predefined end time for the simulation is
reached, layer (L2) handles the collection of log data from
all machines. This mainly involves logs that are typically
analyzed by IDSs, e.g., access logs, authentication logs,
monitoring logs, and audit logs, but also custom logs gener-
ated by our state machines that simulate normal user and
attacker behavior. In addition, the collection script gathers
so-called facts from all machines, including their IP
addresses, OS information, network configurations, etc.
These data are necessary for the automatic generation of a
ground truth, which is carried out on layer (L1). Labeling
consists of a sequence of steps [13]. First, a pre-processor
prepares all logs for the following tasks. This includes
unzipping archived log files or transforming logs from
binary format into text. Second, a parser runs over all log
lines, transforms them into tokens, and loads them into a
database so that it is possible to query single or multiple
logs based on their event parameters. Third, a post-proces-
sor trims all stored logs according to the predefined start
and stop times of the simulation. Moreover, all labeling
rules that are defined as templates within the attacker TIMs
are filled out using the facts collected in layer (L2). For
example, a rule that labels all DNS log events involving the
domain address of the attacker may be automatically

augmented with this information by extracting the address
as a fact from the attacker’s host machine. Similarly, start
and stop times that are retrieved as facts from the attack
execution logs may be used to limit the search scope of the
queries. In the final step of the labeling procedure, the com-
pleted labeling rules are used to query logs from the data-
base and assign labels to the results. The main advantage of
leveraging facts in rules is that no manual adjustments need
to be made when executing the same rules on other test-
beds, since all relevant information is automatically
extracted as facts from the respective hosts. Finally, after all
labeling rules are processed, the resulting dataset consisting
of the raw logs and their assigned labels is ready to be
shared or used for IDS evaluation.

3.2 Scenario

The previous section outlined a general overview of the
methodology for the generation of our dataset. In this sec-
tion, we describe our targeted use-case and explain specific
design decisions regarding variations in the dataset.

3.2.1 Use-Case

The purpose of our collection of log datasets is to enable
evaluation of IDSs in the context of a widespread applica-
tion scenario that is frequently subject of cyber attacks. Spe-
cifically small- or medium-sized organizations are a
frequent target of cyber attacks, often due to the fact that
they do not have the required resources for extensive pro-
tection [31]. We therefore design our testbed to resemble a
small enterprise network that follows well-known security
guidelines, such as segmentation of networks into zones
[32].

Fig. 3 displays an overview of the network realized by
our testbed. The network comprises three zones: (i) the
intranet that contains a number of Linux hosts5 for each
employee as well as an intranet server running WordPress6

and Samba file share,7 (ii) the demilitarized zone (DMZ)

Fig. 3. Overview of the testbed network. Steps (1)-(3) mark the attacker’s
path to compromise the intranet server and steps (a)-(c) represent con-
nections related to the data exfiltration attack vector.

Fig. 2. Concept for model-driven testbed generation and dataset
labeling.

5. Ubuntu 20.04, https://ubuntu.com/
6. Wordpress 5.8.2, https://wordpress.com/
7. Samba 4.5.9, https://samba.org/
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that contains servers for VPN,8 proxy, mail,9 and cloud
share,10 and (iii) the Internet with global DNS,11 hosts for
remote employees that connect to the intranet via VPN,
external employees that use external mail servers, and an
attacker host. The zones are connected via a firewall12 that
also acts as an internal DNS server for all domains owned
by the organization. All employed technologies are publicly
available and commonly used in real networks [6].

As outlined in Section 3.1, TIMs result in different TSMs
due to the fact that several parameters are set dynamically
during instantiation of the testbeds. With respect to the sys-
tem environment, this mainly concerns the network size
and allocation of IP addresses. In particular, we generate
between 3 and 9 hosts for internal, remote, and external
employees respectively, meaning that the final testbed may
consist of at least 9 and at most 27 user simulations running
in parallel. Similarly, we generate between 2 and 4 external
mail servers. We also assign each network zone a random
class and randomly choose IP addresses from these zones
for each host. Finally, we also configure the domain names
of all network zones as random names using the Faker
library.13 Table 2 provides a summary of all variations of
the technical infrastructure.

3.2.2 User Simulation

Real networks in small- or medium-sized organizations are
actively used by humans that carry out their daily routines
in their workplace. The simulation of normal behavior is
therefore an essential aspect of synthetic dataset generation
for IDS evaluation. Simulated normal system behavior that
is not sufficiently complex may result in non-representative
datasets that yield too low false positive rates during IDS
evaluation, as human interactions with machines are often
erratic and possibly lead to unexpected system states that
may be incorrectly detected as malicious. We therefore
decided to create state machines for all services in our
testbed that are normally accessed by real users. For this
purpose, we make use of web automation software14 that
allows to use scripts to navigate on websites and click on
specific links.

Fig. 4 visualizes the state machine for a user accessing the
cloud share platform. Note that states describe the current

view of the users and that activities such as clicking buttons
are carried out when traversing from one state to another.
As visible in the figure, the user first logs into the Own-
Cloud platform (possibly with incorrect credentials, in
which case login is retried) and then enters pages showing
either all their files, files marked as favorites, files shared
with other users, or files other users shared with them.
Depending on their selection, the users are then able to
view files, upload and share new files, change or remove
existing shares, accept or decline invitations to share files,
and manage their favorites. Furthermore, there is the possi-
bility that a user leaves the cloud sharing application and
switches to another website, or enters the idle state in which
case no action is carried out for a certain amount of time.
We argue that the total number of possible transitions and
interweaving of states visible in Fig. 4 is sufficiently com-
plex to represent real user interaction. Section 4.2 will com-
pare log data generated by simulated and real users to
verify this claim.

We do not provide figures for all state machines for brev-
ity, but briefly discuss their main features. (i) The web mail
state machine allows users to view, compose, and respond
to mails from other users, attach files to mails, change their
preferences, and manage their calendar entries, contacts,
notes, and tasks. In addition, privileged users may access
the administrator panel to view and change settings of the
platform. (ii) The WordPress state machine allows users to
read existing posts on the WordPress instance, publish new
posts, comment on existing posts, and view available
media. (iii) The Internet state machine allows users to
browse the Internet by randomly clicking on links on one of
the websites from a predefined list. (iv) The SSH state
machine allows users to connect to a host in the network via
SSH to execute some of a predefined list of commands. All
state machines are connected with each other, i.e., users are
able to change between state machines, to further increase
the complexity of the simulation.

Whether a user accesses specific states within the state
machines or not depends on their roles, which are subject to
variation. In particular, we define an SSH administrator role
and furthermore differentiate between editor and adminis-
trator roles on the WordPress page and employee, manage-
ment, accounting, administrator roles on Samba and
OwnCloud pages. When no role is assigned to a user, the
respective state machine is not entered at all. The names of
all users are randomly generated from databases and their
passwords are random strings. We also vary their working
hours, assign their preferred web browser, generate their
mail addresses from one of the external mail servers, and
select random samples for their usual contacts and available
files. To ensure that all files involved in the simulation
appear realistic and do not only involve completely random-
ized contents, we make use of a collection of predefined
dummy files with non-sensitive contents. Table 3 provides
an overview of the varied parameters and their parameter
spaces. Note that we use idle times to temporarily pause the
state machines not only in idle states that are specifically cre-
ated for this task, but also when entering or leaving certain
states. This accomplishes to simulate delays between single
clicks (tiny), pauses for reading and reacting to website con-
tents (small and medium), or longer breaks of inactivity

TABLE 2
Variations of the System Environment

Parameter Range

Number of user hosts 9-27
Number of mail servers 2-4
Network zone classes [ a, b, c ]
Host IPs Random IP within respective zones
Network and zone names Random names

8. OpenVPN 2.4.4, https://openvpn.net/
9. Horde Groupware 5.2.17, https://horde.org/apps/webmail
10. OwnCloud 10.5.0, https://owncloud.com/
11. MaraDNS 2.0.13, https://maradns.samiam.org/, and Dnsmasq

2.79, https://thekelleys.org.uk/dnsmasq/doc.html
12. Shorewall 5.1.12.2, https://shorewall.org/
13. Faker, https://github.com/joke2k/faker
14. Selenium, https://www.selenium.dev/
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(large). The table leaves out several minor parameters, such
as limits for maximum daily accesses or factors that make
repeated executions of same activities more unlikely, for
whichwe refer to our open-source implementation.

3.2.3 Attack Scenario

While simulation of normal user activity is necessary to
ensure authenticity of the underlying conditions, injected
attacks are required to provide the artifacts to be detected
or classified by IDSs. Accordingly, it is essential to design
relevant attack cases that fit the overall use-case and are
suitable to generate desired consequences in the dataset.
For our use-case, we decided to model a multi-step attack
that involves several stages of a typical cyber kill chain [33]
and makes use of common penetration testing tools [34].
Fig. 3 shows the connections and affected hosts of this attack

scenario. In particular, steps (1)–(3) show how the attacker
first accesses the intranet over VPN to gather information
and eventually takeover the intranet server, and steps (a)-
(c) indicate how data is extracted from the file share in the
intranet zone over a public DNS server to the attacker. In
the following, we explain all attack steps in detail.

As part of our attack scenario, we assume that the attacker
illegitimately obtained VPN credentials that allow them to
access the network. In real-world attack cases, obtaining such
credentials could be achieved through phishing attacks or by
compromising a personal computer of an employee. Note
thatwe do not simulate this part of themulti-step attack, since
it occurs outside of the enterprise’s network and thus does not
leave any traces in the logs.

Once the attack execution starts, the attacker makes use
of the VPN credentials to remotely establish a connection to
the network over the VPN server. The first step of the attack

Fig. 4. User state machine for simulating normal behavior on the cloud share platform.

TABLE 3
Variations of Simulated User Behavior

Parameter Range

User name Random name
Password Random string
Wordpress role [ editor, admin, none ]
SSH admin [ yes, no ]
Samba role [ employee, mgmt., acc., admin, none ]
OwnCloud role [ employee, mgmt., acc., admin, none ]
Working hours (5:00-9:00) - (17:00-22:00)
User mail provider Random selection from all mail servers
User mail contacts Random selection from all users
State transition probabilities 0.0-1.0
Web browser [ firefox, chromium ]
Idle times Tiny: 0.4-2.5 seconds Small: 3-60 seconds Medium: 40-360 seconds Large: 400-3600 seconds
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chain then consists of several scans of the network. In partic-
ular, the attacker employs the well-known tool Nmap15 to
carry out DNS and port scans in the DMZ network where
the VPN server is located. This allows the attacker to dis-
cover the CIDR of the intranet network and thus extend
their scans to the hosts located in the intranet zone. Eventu-
ally, a web service scan shows a WordPress instance run-
ning on the intranet server, which leads to the attacker
selecting this server as a possible target for intrusion. The
attacker thus launches a brute force directory scan using the
tool dirb16 in order to find potentially interesting files. Since
this scan shows up no results that allow the attacker to prog-
ress any further, they carry out a WordPress security scan
using the tool WPScan17 in order to discover vulnerable ver-
sions or misconfigurations of plugins or themes installed on
the server. Other than the directory scan, this security scan
shows that a vulnerable version of the plugin wpDiscuz is
present on the server. At this point, the attacker stops scan-
ning and instead focuses on exploiting the vulnerability,
which marks the end of the reconnaissance phase.

By exploiting the vulnerable plugin, the attacker is able
to perform unrestricted file uploads (CVE-2020-24186). This
allows the attacker to upload a PHP webshell as a backdoor
that in turn allows them to execute arbitrary commands
with the privileges of the www-data user of the web server.
The attacker proceeds to execute several commands to
gather information about the host, e.g., reading out pro-
cesses, command histories, OS information, connections, or
file names. Eventually the attacker finds the password to
the user database in the WordPress configuration file and is
thus able to access all user names and their hashed
passwords.

The attacker then attempts to crack one of the hashed
passwords using a list of common passwords. For this, our
attacker state machine branches into two paths. In one path,
we assume that the attacker transfers the password hashes
to their own system and manages to crack one of the pass-
words there. Since this activity takes place outside of the
monitored network, no logs are created and thus detection
is not possible. Accordingly, we simulate this case by sim-
ply pausing the state machine for a specific amount of time.
The other path simulates that cracking takes place at the
compromised server. For this, the attacker installs the tool
John the Ripper18 and uses a common password list for
cracking. Due to the fact that the purpose of our datasets is
to provide detectable traces of anomalous behavior, we opt
for the latter case when running our simulations. Note that
as part of our attack scenario, we assume that the password
of at least one system user is always present in the password
list and thus successfully cracked after a certain amount of
time. Subsequently after obtaining the password, the
attacker uploads a fully interactive reverse shell and mis-
uses the compromised user account to escalate their privi-
leges to root level. The attacker then executes several
commands of which some require root privileges, such as
reading out the shadow file.

As a final step of the attack kill chain, the attacker runs
the DNSteal19 tool that exfiltrates sensitive data from the file
share located in the intranet zone. Thereby, the tool starts a
process that converts files from certain directories into
base64 to conform to the requirements of DNS queries,
splits them into chunks, and sends them as DNS requests
through the firewall to a specific attacker-controlled domain
in the global DNS. Eventually the data is transferred from
the malicious domain to the attacker’s host, where it is
decoded and stored. While we could have modeled the
attack chain in a way so that the attacker would set up this
exfiltration tool once they gained system privileges, we
decided to separate this step from the remaining attack vec-
tors and instead start the exfiltration tool already at the
beginning of the simulation. The reason for this is that we
decided to design the exfiltration attack as a challenge for
anomaly-based IDSs that usually rely on an training phase
that is free of attacks. By running the tool from the begin-
ning of the simulation, we purposefully poison the training
phase so that the malicious DNS communication is learned
as part of the normal system behavior. However, the attack
may still be detected by anomaly-based IDSs, since the exfil-
tration stops after a few days when all files are extracted.
This is especially challenging, since it is usually more diffi-
cult for an IDS to recognize that a service suddenly stopped
compared to the detection of a newly started service.

Table 4 summarizes the attack scenario. The first column
maps each of the attack steps stated in the second column to
phases of the cyber kill chain [33]. As stated before, the Data
Exfiltration step does not chronologically follow the other
attack steps. The third column lists related tactics and tech-
niques from the well-known MITRE ATT&CK matrix ver-
sion 10 [35] for each attack step. The matrix classifies and
describes a wide range of common attack techniques and
also provides information on detection. As visible in the
table, our multi-step attack involves a diverse set of attack
techniques that are part of several tactics. Finally, the last
column states the most relevant log files that contain attack
traces for each attack step. Since many different log files are
affected, it is necessary to configure IDSs to monitor several
hosts of the network in order to obtain a full picture of the
multi-step intrusion.

Similar to the infrastructure and user behavior, we vary
the attack parameters as part of the transformation from
TIM to TSM. Table 5 provides an overview of the main var-
iations used to generate the dataset. Note that while the
time of day at which attack execution is initiated is varied,
we manually set the day for each simulation run in advance.
The reason for this is to avoid that the attack is launched too
early and thus the dataset does not provide a sufficiently
long training phase of at least 3 days. To select and imple-
ment variations of parameters of utilized attack tools, we
looked up allowed values and ranges for each parameter in
the respective documentations. Since tools such as WPScan
and DNSteal have multiple parameters that support ranges
of allowed values, many possible combinations of values
exist and thus the attack traces resulting in the logs are
highly different. To realize random command executions,

15. https://nmap.org/
16. https://tools.kali.org/web-applications/dirb
17. https://wpscan.com/wordpress-security-scanner
18. https://www.openwall.com/john/ 19. https://github.com/m57/dnsteal

3474 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 20, NO. 4, JULY/AUGUST 2023

https://nmap.org/
https://tools.kali.org/web-applications/dirb
https://wpscan.com/wordpress-security-scanner
https://www.openwall.com/john/
https://github.com/m57/dnsteal


we assembled a list of common commands and randomly
sampled them. We also injected the user password to be
cracked in specific positions of the password file used by
John the Ripper so that the duration to complete cracking
varies in each run.

4 ANALYSIS OF LOG DATASETS

The previous section outlined our methodology and sce-
nario for generating testbeds using a model-driven
approach. Following this methodology, we generated eight

testbeds and collected log data from them. This section pro-
vides some insights into these datasets by analyzing and
comparing the logs.

4.1 Testbed Infrastructures

In course of around four weeks we instantiated a total of
eight testbeds that we used to collect log datasets. The dura-
tions of the simulations for each dataset are between 4-6
days, where the exfiltration attack that is already running in
the beginning of the simulation usually stops after 1-3 days

TABLE 4
Overview of the Attack Scenario

Kill chain phases Attack steps Tools MITRE ATT&CK Tactics and Techniques Data sources

Reconnaissance Traceroute
Network scan
DNS scan
Service scan

Nmap Reconnaissance
- Active Scanning
- Gather Victim Network Information

DNS logs
Network traffic

Reconnaissance WordPress scan
Directory scan

WPScan
Dirb

Reconnaissance
- Active Scanning
- Gather Victim Host Information

Access logs
Error logs
Network traffic

Initial Intrusion
Establish a Backdoor

Webshell upload
Webshell command execution

Shell Execution
- Exploitation for Client Execution
Persistence
- Server Software Component
Discovery

Access logs

Obtain User Credentials Wordpress database dump Shell Credential Access
- OS Credential Dumping

Access logs

Obtain User Credentials
Install Various Utilities

Password cracking John the
Ripper

Credential Access
- Brute Force: Password Cracking

Monitoring logs

Privilege Escalation Login as system user Shell Privilege Escalation
- Valid Accounts

Auth logs
Audit logs

Lateral Movement Reverse shell setup
Root command execution

Shell Execution
- Command and Scripting Interpreter

Auth logs
Audit logs

Data Exfiltration Exfiltration over DNS DNSteal Exfiltration
- Exfiltration Over Alternative Protocol

DNS logs
Audit logs

TABLE 5
Variations of the Attack Scenario

Attack Parameter Range

General Start times 00:00 - 24:00
Attacker name Random name

Network scans Ports 100-2000 top ports
Hosts Random selection of servers

Wordpress scan Scan mode [ passive, mixed ]
Enumeration Random selection of plugins, themes, configs.,

database exports, users, and media
Directory scan Recursive [ yes, no ]

Case-sensitive [ yes, no ]
Webshell Shell name Random string

Commands Random commands
Password hash Mode [ online, offline ]
cracking Duration 30-90 minutes
Reverse shell Port 1100-65000

Commands Random commands
Exfiltration DNS domain Random string

Forced IP [ yes, no ]
Compression [ yes, no ]
Verbosity [ yes, no ]
Block size 32-63
Sub domains integer of (200 / block size)
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and the multi-step server takeover attack usually takes
place one of the last two days.

Table 6 provides an overview of the technical infrastruc-
ture used to generate each of the datasets. Note that we refer
to each dataset by the randomly selected name of the overall
testbed network that contains all zones. As visible in the
table, the randomly selected numbers of mail servers and
user host machines present in the testbeds correspond to
the parameter variations stated in Section 3.2.1. We point
out that the size of the datasets mostly depend on the num-
ber of active users and the length of the simulation.

Table 7 shows which log files are collected from which
hosts, where✓indicates that the respective log file is collected
from the host, �✓ indicates that the respective log file is col-
lected and also labels exist for that file, and no symbol indi-
cates that the respective files are not collected or not present
on the hosts. The table also shows thatwe collect network traf-
fic as well as system logs from diverse sources, for example,
access logs, low-level logs of the operating system (audit
logs), application logs (Horde and VPN logs), monitoring

logs, custom logs for state machine executions, etc. Note that
files not marked as labeled do not necessarily lack a ground
truth, since several files are not affected by any of the attacks
and thus all occurring events correspond to normal behavior.
We therefore only mark files as labeled in case that attack
traces are known to occur in these files and labeling rules for
the respective attackmanifestations exist.

As visible in the table, we mainly focused on log files
from the intranet server when developing our labeling
rules. The reason for this is that the majority of attack steps
are launched against that server and the diversity of these
attack vectors cause that several different files are affected.
In Section 4.4 we provide a more detailed overview of
assigned labels.

4.2 Normal Behavior

As pointed out in Section 2.1, it is essential for synthetic log
data generation to simulate normal user behavior that corre-
sponds to real humans interacting with the system in terms

TABLE 6
Technical Infrastructure of Testbeds

Dataset Network Mail
servers

Internal
employees

Remote
employees

External
users

Start End Duration

fox fox.org 4 5 4 7 2022-01-15
00:00

2022-01-20
00:00

5 days

harrison harrison.com 2 3 6 6 2022-02-04
00:00

2022-02-09
00:00

5 days

russellmitchell russellmitchell.
com

2 4 3 3 2022-01-21
00:00

2022-01-25
00:00

4 days

santos santos.com 2 9 3 6 2022-01-14
00:00

2022-01-18
00:00

4 days

shaw shaw.info 3 5 5 3 2022-01-25
00:00

2022-01-31
00:00

6 days

wardbeck wardbeck.info 3 6 7 4 2022-01-19
00:00

2022-01-24
00:00

5 days

wheeler wheeler.biz 4 8 6 8 2022-01-26
00:00

2022-01-31
00:00

5 days

wilson wilson.com 2 7 8 9 2022-02-03
00:00

2022-02-09
00:00

6 days

TABLE 7
Log Files Collected from Hosts
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of click frequency as well as complexity and diversity of
actions. However, we noticed in our literature review (cf.
Section 2.2) that comparisons of presented datasets with
real user behavior are rarely carried out. We therefore vali-
date our log datasets by carrying out a comparison with
real-world log data generated by humans performing tasks
in a similar network environment. The real log data was col-
lected during a cyber security exercise20 that took place in
September of 2021. As part of the exercise, eight teams con-
sisting of four people respectively were tasked to investi-
gate traces of existing malware that infected their networks,
monitor their systems for incoming cyber attacks, and
respond to incidents by contacting authorities. As part of
this one-day exercise, several attacks were scheduled for
automatic execution at specific points in time, keeping the
participants busy at all times. During the exercise, the teams
worked isolated from each other and could not access the
technical infrastructure of other teams.

To set up the system environment for each team, most of
the provisioning scripts were reused as TIMs for setting up
the testbed as outlined in Section 3.2.1. This allows us to
compare the contents of the log files generated in the envi-
ronments utilized by real humans and those of our dataset.
We select the DNS logs as a base for comparison, since they
contain queries on a level of abstraction that allows us to
determine whether users accessed the cloud server, mail
server, file share, etc. Fig. 5 visualizes the events produced
of the real users (left) and simulated users (right). Note that
we only use logs from the first day of each dataset since
there is also just one day of logs from real users available.

The plots show that there are some discrepancies
between real and simulated users, however, these are

mostly linked to some conscious design decisions. First, it is
apparent that logs generated by simulated users are more
spread out across the day with logs occurring between
5:00-22:00, while real users only produced logs between
7:00-17:00. This is clearly caused by the fact that the cyber
security exercise had a clear start and end time and partici-
pants were not freely able to carry out their tasks at any
time they desire. Accordingly, we argue that the user behav-
ior in our datasets that simulates employees rather than par-
ticipants of an exercise adequately represents the active
times of employees with flexible working hours. Similarly,
real logs show that users hardly ever accessed the file share,
which is mostly due to the fact that none of their tasks were
linked to sharing files with each other. Overall, the relative
frequencies of accesses per service from real users largely
resemble those of simulated users, with mail servers being
the most actively accessed services. Considering the abso-
lute event frequencies, the simulation appears to correctly
depict access frequencies of real users in terms of average
accesses per person and hour as well as fluctuations thereof
across the day. In particular, we computed that real users
generate 306.2 DNS events per day across all services on
average with a standard deviation of 62.2 and simulated
users generate 307.2 DNS events per day across all services
on average with a standard deviation of 56.7.

4.3 Attacks

Manifestations of attack executions in log data and labels
thereof are crucial for log datasets. As discussed in Sec-
tion 3.2.3, we designed our attack scenario to involve a wide
variety of attack types that affect several different files. In
the following, we exemplarily show how some of these
attack steps manifest themselves in the generated datasets.

One of the most recognizable attack steps is the directory
scan that is carried out as part of the reconnaissance phase.

Fig. 5. Event counts in DNS logs for different services.

20. Austrian Press Agency, https://www.ots.at/presseaussendung/
OTS_20210922_OTS0036
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This attack makes several thousands of requests in a short
amount of time to the targeted web server, of which all are
recorded in the Apache access logs. Since this log file usu-
ally contains events that relate to users requesting resources
by clicking around on web pages, the scan causes a drastic
increase of the average load during normal system opera-
tion. Fig. 6 shows the number of events in the Apache access
logs per hour on the cloud, intranet, and mail servers of the
santos dataset. As visible in the plot, the accesses on the
intranet server during the directory scan (the relevant time
interval is shaded red) increase from several hundred to
more than 5000.

Monitoring logs contain numeric values of system meas-
urements that are an interesting input for anomaly detection
[17]. This includes measurements on the utilization of CPU,
memory, disk, file system, network communication, pro-
cesses, etc. For our datasets, we collect such monitoring logs
from the file share and intranet server that are both located
in the intranet zone and are thus reasonable targets for mon-
itoring in real-world scenarios. Fig. 7 shows several metrics
derived from CPU and memory utilization that are collected
from the santos dataset. As visible in the top plot, both sys-
tem and total CPU are significantly increased as a conse-
quence of the password cracking attack step (the relevant
time interval is shaded red). The memory metrics do not
show such a strong indication of an ongoing attack, even
though a large file containing passwords is loaded into
memory during cracking. Nonetheless, these and other met-
rics or combinations thereof could also contribute to the
detection of certain attack steps.

Variations of the system environment, normal behavior
simulation, and attack parameters, cause that aforemen-
tioned attack consequences differ across datasets. For exam-
ple, peaks in event frequencies have different magnitudes
relative to the baseline of event occurrences that is consid-
ered normal for that dataset and the time intervals where
system metrics are affected change in length. In addition,
event sequences that are generated as a consequence of
commands executed by the attacker have different form or
parameters. Consider the log events shown in Fig. 8 as an
example. In the fox dataset (top), seven events are generated
when the attacker logs into the compromised user account
phopkins. The same attack step appears different in the harri-
son dataset, as both the affected user changes to jward, termi-
nal /dev/pts/0 rather than /dev/pts/1 is used, and different
commands are executed. We argue that these variations are
useful to achieve higher robustness of results when evaluat-
ing IDSs, since detection accuracy should be similar across

all datasets even though the events to be detected vary. In
Section 5.2, we discuss the benefits of our datasets in more
detail.

4.4 Labels

As explained in Section 3.1, our labeling procedure does not
just make use of attack time windows to mark events as
malicious based on their timestamps, but instead involves
query rules that enable labeling based on event attributes.
We created such rules for eight files as outlined in Table 7
and assign distinct labels to malicious events based on their
attack step. Note that we specifically selected files and
attack steps which involve distinct manifestations of attack
consequences after manually checking all files, however, we
also point out that there are traces of attack steps in other
files that are not labeled in AIT-LDSv2.0. Due to the fact
that our collection of log datasets is maintainable and the
labeling procedure is repeatable, it is possible to add label-
ing rules for these files in future versions of the dataset.

We exemplarily show an overview of labeled events
related to the multi-step attack of the santos dataset in Fig. 9.
The figure visualizes the chronological occurrence of
labeled events, where the distinct labels are depicted on the
vertical axis and affected files are marked with different
symbols. As visible in the plot, some attack steps cause sin-
gular events or short sequences (e.g., uploading the web-
shell), while others affect groups of events that span over a
longer duration (e.g., password cracking). Note that we
assign multiple labels to the same events for clarification.
For example, we introduce a label foothold that subsumes all
attack steps involved in the initial intrusion, including the
VPN connection, scans, and webshell upload. This implies
that our labels follow a hierarchical order, which makes it
easy to select specific types of events for evaluation and fur-
thermore allows to compute detection accuracies separately
for different attack steps [13].

Fig. 7. Monitoring logs of CPU (top) and memory (bottom) showing
attack consequences of password cracking.

Fig. 6. Apache access logs with attack consequences of scans.
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5 DISCUSSION

In this section we discuss whether our generated datasets
fulfill the requirements for IDS evaluation. In addition, we
explain possible application scenarios for our datasets in
detail and outline their limitations.

5.1 Fulfillment of Requirements

We stated requirements for log dataset generation that we
used as a basis for our methodology in Section 2.1. Based on
the generated datasets and the results of our analysis pro-
vided in Section 4 we check whether all requirements are
fulfilled to answer our research question from Section 1.
Requirement (1) is fulfilled as our datasets address enter-
prise IT, which is a wide-spread and relevant use-case for
intrusion detection. We followed common guidelines for
network design and selected open-source components that
are popular choices in such infrastructures [6]. Requirement
(2) addresses simulation of normal system behavior. We
argue that our state machines and randomized user role
assignments that are used for simulating employees as out-
lined in Section 3.2.2 are sufficiently extensive to generate
complex patterns. Moreover, we show in Section 4.2 that
page visit frequencies of our simulated employees largely
resemble those of real users. Similarly, our selected attack
scenarios involve diverse steps and recent exploits to fulfill
requirement (3). We collect both system log data as
demanded by requirement (4) as well as network traffic as
demanded by requirement (5). Our user simulations follow
daily activity cycles as visible in our analysis results pre-
sented in Section 4.3. Since multiple days of such normal
behavior is recorded, we consider requirement (6) that
addresses periodic patterns as fulfilled. Requirement (7) is
fulfilled as we generate a ground truth for events using our
labeling framework as described in Section 3.1. Beside a
description of the overall scenario available in this paper
and the dataset repository, all scripts and configurations of
our testbeds are published together with the log data and
thus also requirement (8) on the availability of documenta-
tion is fulfilled. Requirements (9) and (10) are fulfilled,
because we generate multiple datasets that contain repeated
executions of the same attack steps with variations. Finally,
requirement (11) is fulfilled as we publish all scripts for
deploying and running the simulation as open-source code.

5.2 Application Scenarios for AIT-LDSv2.0

Due to the characteristics of our dataset, we foresee several
different application scenarios. In the following, we discuss

(federated) intrusion detection, alert aggregation, and user
profiling as interesting research areas that benefit from our
data.

5.2.1 Evaluation of Intrusion Detection Systems

Foremost, the purpose of our collection of datasets is to
enable evaluation of host- and network-based IDSs. We
injected attacks that employ diverse techniques so that their
consequences manifesting in log files challenge a wide
range of detection mechanisms [36]. For example, we antici-
pate the following non-exhaustive list of detection techni-
ques to be applied on our dataset.

� New log artifacts. As part of many attack steps, new log
events such as the sample logs from Fig. 8 appear in
some log files. Alternatively, normal event types may
appear with different parameters or combinations of
parameter values. These events are often regarded as
outliers and disclosed by log filtering and prioritiza-
tion methods [37]. Despite the fact that detection tech-
niques for new log artifacts are usually relatively
simple, they are also highly powerful, because of their
low runtime requirements and the ability to apply
them tomost events or categorical values.

� Structure of parameter values. The DNSteal attack
makes use of a randomly generated domain names
for data exfiltration, which could be useful to evalu-
ate detectors for domain-generation algorithms [38].
The same applies for Apache access logs, where
commands sent to the webshell appear in URLs.

� Sequence mining. Log events usually occur in specific
sequences that represent inherent program flows of

Fig. 8. Different log events caused by the attacker escalating to system privileges in the fox (top) and harrison (bottom) datasets.

Fig. 9. Occurrences of events labeled as part of the multi-step attack.
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monitored services. Workflow mining extracts these
patterns and allows to detect unusual sequences as
anomalies [39], [40]. Consequences of exploits and
other malicious attacker behavior often manifest in
such sequences, for example, audit events generated
when the attacker executes commands via the remote
shell.

� Event frequencies. As pointed out in Section 4.3, attacks
such as scans are recognizable by high amounts of log
occurrences in short time intervals. Anomaly detec-
tion techniques therefore create event count matrices
and detect time windows with unusual high or low
event frequencies with the aid of various machine
learning methods, including time-series analysis [41]
and principal component analysis [40].

� Missing events. We deliberately designed our attack
scenario to include a data exfiltration attack that is
already ongoing at the beginning of the simulation
and stops after some days. We expect that detectors
based on machine learning add these malicious
events to theirmodel of normal behavior that is gener-
ated during the training phase, and thus poison their
models. Accordingly, detectors need to raise anoma-
lies for the stopping of event occurrences, which we
consider a more challenging detection scenario than
recognizing the start of the exfiltration process.

� Statistical tests. System performance metrics and
numeric features of network traffic are suitable for sta-
tistical analyses such as time-series analysis and test-
ing for certain distributions. Alternatively, hypothesis
testing is also applicable for detecting changes of corre-
lating behavior of categorical variables in log data [42].

We argue that our data has a large benefit over most
existing datasets for IDS evaluation, as it contains data from
multiple separate testbeds targeted by the same attack sce-
nario. Due to the variations in the log traces caused by
changes of the system environment, simulated normal
behavior, and attack parameters, we expect that detection
accuracies vary when applying the same detectors on differ-
ent datasets. However, by averaging the detection metrics
achieved on all datasets, the aggregated results have a
higher robustness as they are more representative for a gen-
eral case and not fine-tuned to only a single execution. In
addition, simulating many similar infrastructures allows to
evaluate approaches that leverage federated learning for
intrusion detection [43].

Moreover, the ground truth tables of our datasets are not
just binary labels that determine whether an event is part of
an attack or not, but instead precisely state the type of
attack. This means that it is also possible to evaluate attack
classification accuracy in case that the detectors are capable
of determining attack types, e.g., by matching them with a
list of known and labeled meta-alerts.

5.2.2 Evaluation of Alert Aggregation Techniques

Intrusion detection techniques as stated in the previous sec-
tion often raise large amounts of alerts for some attack steps,
where the vast majority of these alerts are duplicates and
only have little value to operators that monitor IDSs. Alert
aggregation therefore attempts to merge these alerts to

reduce the workload of operators and ease the identification
of urgent alerts that require immediate actions. On top of
that, advanced aggregation techniques are capable of recog-
nizing patterns of alert occurrences and are able to connect
attack steps to attack scenarios [21].

In order to merge alerts and attack steps, it is obviously
necessary to have datasets at hand that contain repetitions
of the same or similar attacks. Unfortunately, these datasets
are rare even though they are urgently needed in research
[20]. We therefore propose to forensically analyze our data-
sets with a desired selection of IDSs to obtain sequences of
alerts that are used for aggregation. Similar to the evalua-
tion of IDSs, the variations of our attack scenarios come in
handy as they yield different alert patterns for each dataset,
e.g., variable amounts of alerts for scans with varying dura-
tion or optional alerts caused by commands that the attacker
only carries out with certain probabilities. This allows to
evaluate whether alerts are indeed aggregated with the
same attack types independent of slight variations that
occur in real-world environments.

5.2.3 Evaluation of User Profiling Approaches

User profiling is a trending research topic that aims to create
a profile for each user and then use these profiles to group
users by their behavior or role. For this, algorithms based on
pattern mining read out access logs that detail all page visits
by each user [44]. Note that this application scenario is not
related to cyber attacks, because only the simulation of nor-
mal user behavior is relevant. Due to the fact that our simu-
lated users have specific roles (e.g., WordPress editor or
administrator) and visit all pages based on transition proba-
bilities, they clearly follow their own behavior profiles. The
main advantage over real data is that it is easy to adjust these
profiles according to the respective use case and to quantita-
tively compare their similarities, which is useful for evalua-
tions and cannot be replicatedwith humans.

5.3 Limitations

Despite all aforementioned benefits of our log dataset, we rec-
ognize some limitations. Most important, the user simulation
that generates a baseline of normal behavior for our collection
of log datasets is obviously limited by the extent of our state
machines. On the other hand, real datasets that contain traces
of humans interacting with the monitored environments
always have the possibility to involve artifacts caused by
deliberate or accidentalmisuse of the systems that could yield
incorrect alerts by IDSs. Despite our efforts to generate com-
plex user behavior, we therefore cannot ensure that false posi-
tive rates achieved on our datasets are representative for real-
world systems. Nonetheless, we are convinced that our syn-
thetic datasets have significant advantages over real ones, as
they can be freely published without the need to anonymize
artifacts due to privacy concerns andmay be arbitrarily recre-
ated inmodified use-cases if necessary.

We also point out that we aimed to generate the log data
in the most realistic way possible, meaning that we did not
configure the logging frameworks to collect data on the
highest level of granularity, but instead used standard or
default configurations wherever applicable. In case that
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logging levels need to be adapted, it is always possible to
replay the attack scenarios on our open-source testbeds.

As part of varying the parameters of our testbed when
generating TSMs from TIMs, we also decided to leave con-
figurations of logging services unchanged in order to ensure
that our labeling rules do not accidentally leave some events
unlabeled. We leave the task of extending our labeling rules
for this kind of variations for future work.

6 CONCLUSION

In this paper we present a collection of eight synthetic log
datasets for evaluation of intrusion detection systems. We
collect our datasets from testbeds generated by a model-
driven methodology for testbed setup and labeling. This
enables to repeat the data collection procedure arbitrary
many times while at the same time varying several parame-
ters of the simulation with low manual effort. In addition, it
is simple to scale the network and extend it with additional
components or services. Our datasets are openly accessible
and maintainable as all code required to deploy testbeds,
run simulations, and assign labels to log events is available
open-source. Our datasets thus solve several problems that
are prevalent in existing datasets, including control over the
simulation parameters, presence of repeated attack execu-
tions in similar environments, generation of ground truth
tables, complexity of the network, preprocessing of logs to
protect sensitive information, and more.

Our log datasets address the common use-case of an
attack on the infrastructure of a enterprise IT network. In
particular, the attack scenario involves reconnaissance
scans, brute-force password cracking, data exfiltration, as
well as utilization of various tools and exploits to eventually
obtain system access. To generate a realistic baseline of nor-
mal behavior, we simulate user activity by extensive state
machines that are specifically designed to utilize services
such as mail platforms and file shares. We primarily created
our dataset to provide diverse attack vectors that challenge
many different detection techniques, however, we also fore-
see applications that go beyond IDS evaluation, in particu-
lar, alert aggregation and user profiling. We see our dataset
as the first in a series and foresee to extend the labeling rules
to more files and attack steps in upcoming versions. For
future work, we plan to extend user simulations to run on
Windows hosts and mobile devices, and to create testbeds
for new use-cases such as Internet-of-Things.
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