Dynamic Trust in Mixed Service-oriented Systems
- Models, Algorithms, and Applications -

PhD Defense, June 18th 2010, Vienna, Austria

Florian Skopik
Advisors: Prof. Schahram Dustdar, Prof. Frank Leymann

Distributed Systems Group
Vienna University of Technology, Austria
skopik@infosys.tuwien.ac.at
Environment and Motivation

- **Open and dynamic** Web-based environment
 - Humans and resources (e.g., Web services)
 - **Joining/leaving** the environment **dynamically**
 - Humans perform **activities** and **tasks**
- **Massive collaboration** in SOA/Web 2.0
 - Large sets of **humans** and **resources**
 - Dynamic **compositions**
 - Distributed communication and coordination
- **Keep track of the dynamics** to control
 - Future interactions
 - Resource selection
 - Compositions of actors
 - Disclosure of information
Motivating Scenario: The Expert Web

- How do actor discovery and selection mechanisms work?
- What is the technical grounding for the proposed Mixed System?
- How can actors be flexibly involved in a service-oriented manner?
- How do interactions and behavior influence future collaboration?

Structure of Presentation
Challenges in Collaborative SOA

- **Loose coupling**
 - flexible collaborations
 - environment model

- **Discovery**
 - dynamic properties
 - metrics
 - context
 - network structure

- **Dynamic binding**
 - selection
 - Automatic inference of personal trust
 - Bootstrapping trust
 - definition meaning applications
Contributions

- Collaborative mixed service-oriented systems
 - Interaction models
 - Delegation patterns
- Social trust and reputation models
 - Definitions and metrics
 - Inference approach
 - Temporal Evaluation
- Trust mining and prediction
 - Bootstrapping
 - Interest and expertise mining
 - Trust and reputation mining on the Web
- Trust-based service-centric applications
 - Expert discovery and ranking in virtual communities
 - Trusted information sharing/disclosure
 - Trust-based interest group formation

Definition of Dynamic Trust

- Trust reflects an **expectation**
 - one actor has about another’s future behavior
 - based on **previous interactions**
 - to **perform particular activities** dependably, securely, and reliably.

Flexible Collaborations

- **Traditional** project management (PM)
 - **Predefined** processes and *work breakdown structures*
 - Most important steps (tasks) are planned
 - Temporal order and dependencies

- Underneath the PM layer: **ad-hoc** activities
 - Structures to describe loosely coupled collaborations
 - Not modeled in advance
 - Emerging when performing tasks
 - User-defined

- **Typical Example:** Expert Web
 - Collaboration partners are discovered based on availability
 - Temporal constraints are dynamically set based on urgency
 - Required resources are flexibly selected based on RFS
Mixed Systems Approach

- **Fundamental concepts**
 - Mix of human- and software services collaboration
 - Humans provide services using SOA concepts

- **Expert Web Scenario**
 - Humans provide support in a service-oriented manner
 - Expert actors ‘implemented’ in software
 - knowledge bases
 - expert systems
 - oracles with reasoning capabilities
 - One harmonized environment to enable interactions between humans and software components (SOA)

Human-Provided Services (HPS)

- User contributions modeled as services
 - Users define their own services
 - Reflect willingness to contribute
- Technical realization
 - Service description with WSDL (capabilities)
 - Communication via SOAP messages
- Example: Document Review Service
 - Input: document, deadline, constraints
 - Output: review comments

Collaboration Network Concepts

Collaboration Metrics: reliability, responsiveness, success rate, collected experience, joint activities,…

\[\text{Personal TRUST Inference} \]

(see later)

The Cycle of Trust

Analyzing Interactions
Establishing Trust Network

Trust-aware collaboration planning

Monitoring Collaboration

Executing Activities/Tasks

Structure of Presentation

- Loose coupling
- Discovery
- Dynamic binding

Flexible collaborations

Dynamic properties

Selection

Bootstrapping trust

Automatic inference of personal trust

Environment model

Metrics

Monitoring

Network structure

Definition meaning applications

12 of 31
Trust Inference Overview

<soap:Envelope xmlns:soap="...
 <soap:Header>
 <vietypes:timestamp value="2010-06-18T10:59:00"/>
 <vietypes:delegation hops="3" deadline="..."/>
 <vietypes:activity url="http://.../Activity#42"/>
 <wsa:MessageID>uuid:722B1240-...<wsa:MessageID>
 <wsa:ReplyTo>http://.../Actor#Florian<wsa:ReplyTo>
 <wsa:From>http://.../Actor#Florian<wsa:From>
 <wsa:To>http://.../Actor#Daniel<wsa:To>
 <wsa:Action>http://.../Type/RFS<wsa:Action>
 </soap:Header>
 <soap:Body>
 <hps:RFS>
 <rfs:requ>Can you review my slides?</rfs:requ>
 <rfs:generalterms>review, ...
 <rfs:keywords>computer science, ...
 <rfs:resource url="http://.../phd-defense.ppt"/>
 </hps:RFS>
 </soap:Body>
</soap:Envelope>

Trust Inference (2)

Calculate Metrics

- Measure collaboration attitude
 - Define metrics that describe trustworthy behavior
 - Calculate metrics upon captured interactions

- Example Scenarios
 - Expert Web: *fast and reliable responses*
 - Average response time
 - (Activity support) success rate
 - Information disclosure in science collaboration: *matching interests and beneficial behavior*
 - Interest/expertise profile similarity
 - Reciprocity: mutual ‘give and take’

\[
t_r^a = \frac{\sum_{rfs \in RFS} (t_{receive}(rfs) - t_{send}(rfs))}{|RFS|}
\]

\[
sr^a = \frac{num(sRFS)}{num(sRFS) + num(fRFS)}
\]

Trust Inference (3)

Fuzzy Interpretation

- Interpretation using fuzzy set theory
 - define membership functions (SLA, best practice)
 - define rule base
 - if \(t_r \) is low and \(sr \) is low then trust is low
 - if \(t_r \) is medium and \(sr \) is high then trust is high
 - mapping of values, inference and defuzzification

What is the meaning of trust in the given scenario?

- **absolute trust limits** (e.g., pre-defined constraints for collaboration)
- **relative ranking** (e.g., who is the most trusted expert from one’s personal perspective?)
Problem: Usually, always the most trusted expert is selected
 - Successful interactions lead to more trust: “The rich get richer”
 - Multiple selections lead to temporary overload

Solution: Balancing through delegations (triadic interaction pattern)
Evaluation: Interaction Balancing (1/3)

- Group formation through invitations
 - All members are connected to initiator 0
 - All members send requests to the initiator
 - Initiator delegates requests using the *Triad pattern*
 - Delegation receiver responds to the initial requester
 - On Success, members get introduced to each others

- Simulation of different actor behavior
 - Fair players (green)
 - Erratic actors (yellow)
 - Malicious attackers (red)
Evaluation: Interaction Balancing (2/3)

- Round-based simulation (r=250)
 - One request per round per actor sent and served or delegated.
 - Untrustworthy actors are punished and excluded from the community after \(r=100 \).

Detailed simulation setup and experiment results in:
Evaluation: Interaction Balancing (3/3)

- **Global success rate**: amount of finished tasks.
- Varying number of requesters in the network

- **RFS**: sending, delegating, and processing takes exactly one round.
- **RFSs** (and delegations) are considered failed if not replied after 15 rounds.
Structure of Presentation

- Loose coupling
- Discovery
- Dynamic binding

- Flexible collaborations
 - Environment model
 - Metrics
 - Monitoring
 - Network structure

- Dynamic properties
 - Selection

- Automatic inference of personal trust

- Bootstrapping trust

22 of 31
Bootstrapping of Trust

- **Problem:** What if no interactions with a potential collaboration partner have been captured?

- **Trust Mirroring**
 - people tend to trust ‘similar minded’ persons
 - calculation of interest similarities

- **Trust Teleportation**
 - people benefit from trust relations in actors from the same group (i.e., advanced trust due to similar profiles as existing trustees)

Bootstrapping Trust Overview (through similarity of tagging behavior)

- Observe collaboration tagging actions
- Actor tagging profiles
- Global interest tree (taxonomy)
- Hierarchical similarity measurement
- Trust mirroring and teleportation

Bootstrapping Approach (1)

Observe Collaborative Taggings

Dynamic tagging profiles characterize actors.

Problem: Compare tagging behavior (usage of tags)!
Bootstrapping Approach (2)

Global Interest Tree (Taxonomy) Creation

- Use tagging actions (actor—tag—resource)
 - degree of tags’ co-occurrence determines closeness
 - clustering: compare tag frequency vectors (tf*idf)
 - different similarity thresholds → hierarchy

- Global interest tree
 - express global areas of interests and relations
Actor tagging profiles (ATPs)
- describe mainly used tags of an actor
- tag usage vector

A) General ATPs
- use tagging actions (actor—tag—resource)
- independent from resources

B) Tailored ATPs
- use tagging actions (actor—tag—resource)
- used tags on a specified subset of resources
- “What is someone’s understanding of a given resource set?”
Hierarchical similarity measurement
- weighting of ATP vectors wrt. the global interest tree
- cosine-similarity of profile vectors
- on different levels of the global tree

Result: two outputs
- similarity in [0,1]
- reliability of similarity (dep. on level of comp.)

Apply profile similarities
- trust mirroring
- trust teleportation

Evaluation: Bootstrapping

- Compare ATPs of citeulike users
 - 45 comparisons (all with each other)
 - General ATP similarity (left fig.)
 - Tailored ATP similarity (right fig.)
 (tags used on SNA papers only)
Conclusion

- **Delegation** patterns lead to an emergence of trust
 - No traditional point-to-point relations only (see balancing)

- **Behavior models** and patterns influence trust
 - Social metrics: interest similarity, reciprocity, …
 - Temporal properties: actor uniformity, reliability, …
 - Context awareness of metrics and relations

- **Discovery and selection** of trustworthy partners
 - Bootstrapping mechanisms
 - Network structures: recommendation, reputation
 - Personal experience: trust

- Various applications of dynamic **system adaptations**
 - Information disclosure
 - Resource allocation
 - Actor compositions
Thank you.

skopik@infosys.tuwien.ac.at